137 resultados para Kaurane diterpenes.
Resumo:
Purpose: To evaluate the antibacterial and cytotoxic activities of the secondary metabolites of Lobophytum sp. Methods: Maceration with methanol: chloroform (1:1) was applied to extract the coral material. Chromatographic and spectroscopic techniques were employed for fractionation, isolation and elucidation of pure compounds. Antibacterial activities were performed by well diffusion method against three Gram-positive and four Gram-negative bacteria. Brine shrimp lethality test was employed to predict toxicity, while antitumor activity were tested by 3-(4, 5-dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide (MTT) method against Ehrlich carcinoma cells. Results: Four sesquiterpenes, one cembranoid type diterpenes and two steroids were isolated. 1 exhibited significant antibacterial activity against four tested bacteria (P. aeruginosa, S. aureus, S. epidermis, and S. pneumonia) with MIC value of 15 μg/mL. Moreover, 1 showed high diameter zone of inhibition ranging from 16 - 18 mm against test bacteria. Compounds 4 and 5 displayed moderate antibacterial activity against all test bacteria with inhibition zone diameter (IZD) ranging from 11 – 15 mm and MIC values of 30 μg/mL. 2, 3, 6 and 7 exhibited weak antibacterial activity (IZD, 7 - 11 mm; MIC ≥ 30 μg/mL). In addition, only diterpene compound (4) showed high toxicity against A. Salina and antitumor activity against Erhlich carcinoma cells with the LD50 of 25 and 50 μg/mL, respectively. Conclusion: This study reveals the strong antibacterial activity of sesquiterpene alismol (1) and the potential antibacterial and antitumor activity of cembranoid type diterpene, cembrene A (4).
Resumo:
Biofilm bacteria are more resistant to antibiotics than planktonic cells. Propolis possesses antimicrobial activity. Generally, nanoparticles containing heavy metals possess antimicrobial and antibiofilm properties. In this study, the ability of adherence of Methicillin Resistant Strains of Staphylococcus aureus (MRSA) to catheters treated with magnetite nanoparticles (MNPs), produced by three methods and functionalized with oleic acid and a hydro-alcoholic extract of propolis from Morocco, was evaluated. The chemical composition of propolis was established by gas chromatography mass spectrometry (GC-MS), and the fabricated nanostructures characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Mossbauer spectroscopy and Fourrier transform infrared spectroscopy (FTIR). The capacity for impairing biofilm formation was dependent on the strain, as well as on the mode of production of MNPs. The co-precipitation method of MNPs fabrication using Fe(3+) and Na₂SO₃ solution and functionalized with oleic acid and propolis was the most effective in the impairment of adherence of all MRSA strains to catheters (p < 0.001). The adherence of the strain MRSA16 was also significantly lower (p < 0.001) when the catheters were treated with the hybrid MNPs with oleic acid produced by a hydrothermal method. The anti-MRSA observed can be attributed to the presence of benzyl caffeate, pinocembrin, galangin, and isocupressic acid in propolis extract, along with MNPs. However, for MRSA16, the impairment of its adherence on catheters may only be attributed to the hybrid MNPs with oleic acid, since very small amount, if any at all of propolis compounds were added to the MNPs.