871 resultados para Junctions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small GTPases of the Ras superfamily play critical roles in epithelial biogenesis. Many key morphogenetic functions occur when small GTPases act at epithelial junctions, where they mediate an increasingly complex interplay between cell-cell adhesion molecules and fundamental cellular processes, such as cytoskeletal activity, polarity and trafficking. Important recent advances in this field include the role of additional members of the Ras superfamily in cell-cell contact stability and the capacity for polarity determinants to regulate small GTPase signalling. Interestingly, small GTPases may participate in the cross-talk between different adhesive receptors: in tissues classical cadherins can selectively regulate other junctions through cell signalling rather than through a global influence on cell-cell cohesion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A common feature associated with the replication of most RNA viruses is the formation of a unique membrane environment encapsulating the viral replication complex. For their part, flaviviruses are no exception, whereupon infection causes a dramatic rearrangement and induction of unique membrane structures within the cytoplasm of infected cells. These virus-induced membranes, termed paracrystalline arrays, convoluted membranes, and vesicle packets, all appear to have specific functions during replication and are derived from different organelles within the host cell. The aim of this study was to identify which protein(s) specified by the Australian strain of West Nile virus, Kunjin virus (KUNV), are responsible for the dramatic membrane alterations observed during infection. Thus, we have shown using immunolabeling of ultrathin cryosections of transfected cells that expression of the KUNV polyprotein intermediates NS4A-4B and NS213-34A, as well as that of individual NS4A proteins with and without the C-terminal transmembrane domain 2K, resulted in different degrees of rearrangement of cytoplasmic membranes. The formation of the membrane structures characteristic for virus infection required coexpression of an NS4A-NS4B cassette with the viral protease NS2B-3pro which was shown to be essential for the release of the individual NS4A and NS4B proteins. Individual expression of NS4A protein retaining the C-terminal transmembrane domain 2K resulted in the induction of membrane rearrangements most resembling virus-induced structures, while removal of the 2K domain led to a less profound membrane rearrangement but resulted in the redistribution of the NS4A protein to the Golgi apparatus. The results show that cleavage of the KUNV polyprotein NS4A-4B by the viral protease is the key initiation event in the induction of membrane rearrangement and that the NS4A protein intermediate containing the uncleaved C-terminal transmembrane domain plays an essential role in these membrane rearrangements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tight junctions are directly involved in regulating the passage of ions and macromolecules (gate functions) in epithelial and endothelial cells. The modulation of these gate functions to transiently regulate the paracellular permeability of large solutes and ions could increase the delivery of pharmacological agents or gene transfer vectors. To reduce the inflammatory responses caused by tight junction-regulating agents, alternative strategies directly targeting specific tight junction proteins could prove to be less toxic to airway epithelia. The apical delivery of peptides corresponding to the first extracellular loop of occludin to transiently modulate apical paracellular flux has been demonstrated in intestinal epithelia. We hypothesized that apical application of these occludin peptides could similarly modulate tight junction permeability in airway epithelia. Thus, we investigated the effects of apically applied occludin peptide on the paracellular permeability of molecular tracers and viral vectors in well differentiated human airway epithelial cells. The effects of occludin peptide on cellular toxicity, tight junction protein expression and localization, and membrane integrity were also assessed. Our data showed that apically applied occludin peptide significantly reduced transepithelial resistance in airway epithelia and altered tight junction permeability in a concentration-dependent manner. These alterations enhanced the paracellular flux of dextrans as well as gene transfer vectors. The occludin peptide redistributed occludin but did not alter the expression or distribution of ZO-1, claudin-1, or claudin-4. These data suggest that specific targeting of occludin could be a better-suited alternative strategy for tight junction modulation in airway epithelial cells compared with current agents that modulate tight junctions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased vascular permeability is an early event characteristic of tissue ischemia and angiogenesis. Although VEGF family members are potent promoters of endothelial permeability the role of placental growth factor (PlGF) is hotly debated. Here we investigated PlGF isoforms 1 and 2 and present in vitro and in vivo evidence that PlGF-1, but not PlGF-2, can inhibit VEGF-induced permeability but only during a critical window post-VEGF exposure. PlGF-1 promotes VE-cadherin expression via the trans-activating Sp1 and Sp3 interaction with the VE-cadherin promoter and subsequently stabilizes transendothelial junctions, but only after activation of endothelial cells by VEGF. PlGF-1 regulates vascular permeability associated with the rapid localization of VE-cadherin to the plasma membrane and dephosphorylation of tyrosine residues that precedes changes observed in claudin 5 tyrosine phosphorylation and membrane localization. The critical window during which PlGF-1 exerts its effect on VEGF-induced permeability highlights the importance of the translational significance of this work in that PLGF-1 likely serves as an endogenous anti-permeability factor whose effectiveness is limited to a precise time point following vascular injury. Clinical approaches that would pattern nature's approach would thus limit treatments to precise intervals following injury and bring attention to use of agents only during therapeutic windows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microvascular endothelial monolayers from mouse myocardium (MyEnd) cultured for up to 5 days postconfluency became increasingly resistant to various barrier-compromising stimuli such as low extracellular Ca2+ and treatment with the Ca2+ ionophore A23187 and with the actin depolymerising compound cytochalasin D. In contrast, microvascular endothelial monolayers from mouse lung microvessels (PulmEnd) remained sensitive to these conditions during the entire culture period which corresponds to the well-known in vivo sensitivity of the lung microvasculature to Ca2+depletion and cytochalasin D treatment. One molecular difference between pulmonary and myocardial endothelial cells was found to be transglutaminase 1 (TGase1) which is strongly expressed in myocardial endothelial cells but is absent from pulmonary endothelial cells. Resistance of MyEnd cells to barrier-breaking conditions correlated strongly with translocation of TGase1 to intercellular junctions. Simultaneous inhibition of intracellular and extracellular TGase activity by monodansylcadaverine (MDC) strongly weakened barrier properties of MyEnd monolayers, whereas inhibition of extracellular TGases by the membrane-impermeable active site-directed TGase inhibitor R281 did not reduce barrier properties. Weakening of barrier properties could be also induced in MyEnd cells by downregulation of TGase1 expression using RNAi-based gene silencing. These findings suggest that crosslinking activity of intracellular TGase1 at intercellular junctions may play a role in controlling barrier properties of endothelial monolayers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous results in our laboratory suggest that the (CG) 4 segments whether present in a right-handed or a left-handed conformation form distinctive junctions with adjacent random sequences. These junctions and their associated sequences have unique structural and thermodynamic properties that may be recognized by DNA-binding molecules. This study probes these sequences by using the following small ligands: actinomycin D, 1,4-bis(((di(aminoethyl)amino)ethyl)amino)anthracene-9,10-dione, ametantrone, and tris(phenanthroline)ruthenium (II). These ligands may recognize the distinctive features associated to the (CG)4 segment and its junctions and thus interact preferentially near these sequences. Restriction enzyme inhibition assays were used to determine whether or not binding interactions took place, and to approximate locations of these interactions. These binding studies are first carried out using two small synthetic oligomers BZ-III and BZ-IV. The (5meCG)4 segment present in BZ-III adopts the Z-conformation in the presence of 50 m M Co(NH3)63+. In BZ-IV, the unmethylated (CG)4 segment changes to a non-B conformation in the presence of 50 m M Co(NH3)63+. BZ-IV, containing the (CG)4 segment, was inserted into a clone plasmid then digested with the restriction enzyme Hinf I to produce a larger fragment that contains the (CG)4 segment. The results obtained on the small oligomers and on the larger fragment for restriction enzyme Mbo I indicate that 1,4-bis(((di(aminoethyl)amino)ethyl)amino)anthracene-9,10-dione binds more efficiently at or near the (CG)4 segment. Restriction enzymes EcoRV, Sac I and Not I with cleavage sites upstream and downstream of the (CG)4 insert were used to further localize binding interactions in the vicinity of the (CG)4 insert. RNA polymerase activity was studied in a plasmid which contained the (CG)4 insert downstream from the promoter sites of SP6 and T7 RNA polymerases. Activities of these two polymerases were studied in the presence of each one of the ligands used throughout the study. Only actinomycin D and spider, which bind at or near the (CG)4 segment, alter the activities of SP6 and T7 RNA polymerases. Surprisingly, enhancement of polymerase activity was observed in the presence of very low concentrations of actinomycin D. These results suggest that the conformational features of (CG) segments may serve in regulatory functions of DNA. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic processes such as morphogenesis and tissue patterning require the precise control of many cellular processes, especially cell migration. Historically, these processes are thought to be mediated by genetic and biochemical signaling pathways. However, recent advances have unraveled a previously unappreciated role of mechanical forces in regulating these homeostatic processes in of multicellular systems. In multicellular systems cells adhere to both deformable extracellular matrix (ECM) and other cells, which are sources of applied forces and means of mechanical support. Cells detect and respond to these mechanical signals through a poorly understood process called mechanotransduction, which can have profound effects on processes such as cell migration. These effects are largely mediated by the sub cellular structures that link cells to the ECM, called focal adhesions (FAs), or cells to other cells, termed adherens junctions (AJs).

Overall this thesis is comprised of my work on identifying a novel force dependent function of vinculin, a protein which resides in both FAs and AJs - in dynamic process of collective migration. Using a collective migration assay as a model for collective cell behavior and a fluorescence resonance energy transfer (FRET) based molecular tension sensor for vinculin I demonstrated a spatial gradient of tension across vinculin in the direction of migration. To define this novel force-dependent role of vinculin in collective migration I took advantage of previously established shRNA based vinculin knock down Marin-Darby Canine Kidney (MDCK) epithelial cells.

The first part of my thesis comprises of my work demonstrating the mechanosensitive role of vinculin at AJ’s in collectively migrating cells. Using vinculin knockdown cells and vinculin mutants, which specifically disrupt vinculin’s ability to bind actin (VinI997A) or disrupt its ability to localize to AJs without affecting its localization at FAs (VinY822F), I establish a role of force across vinculin in E-cadherin internalization and clipping. Furthermore by measuring E-cadherin dynamics using fluorescence recovery after bleaching (FRAP) analysis I show that vinculin inhibition affects the turnover of E-cadherin at AJs. Together these data reveal a novel mechanosensitive role of vinculin in E-cadherin internalization and turnover in a migrating cell layer, which is contrary to the previously identified role of vinculin in potentiating E-cadherin junctions in a static monolayer.

For the last part of my thesis I designed a novel tension sensor to probe tension across N-cadherin (NTS). N-cadherin plays a critical role in cardiomyocytes, vascular smooth muscle cells, neurons and neural crest cells. Similar to E-cadherin, N-cadherin is also believed to bear tension and play a role in mechanotransduction pathways. To identify the role of tension across N-cadherin I designed a novel FRET-based molecular tension sensor for N-cadherin. I tested the ability of NTS to sense molecular tension in vascular smooth muscle cells, cardiomyocytes and cancer cells. Finally in collaboration with the Horwitz lab we have been able to show a role of tension across N-cadherin in synaptogenesis of neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We calculate the first two moments and full probability distribution of the work performed on a system of bosonic particles in a two-mode Bose-Hubbard Hamiltonian when the self-interaction term is varied instantaneously or with a finite-time ramp. In the instantaneous case, we show how the irreversible work scales differently depending on whether the system is driven to the Josephson or Fock regime of the bosonic Josephson junction. In the finite-time case, we use optimal control techniques to substantially decrease the irreversible work to negligible values. Our analysis can be implemented in present-day experiments with ultracold atoms and we show how to relate the work statistics to that of the population imbalance of the two modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of gap junction coupling among neurons of the central nervous systems has been appreciated for some time now. In recent years there has been an upsurge of interest from the mathematical community in understanding the contribution of these direct electrical connections between cells to large-scale brain rhythms. Here we analyze a class of exactly soluble single neuron models, capable of producing realistic action potential shapes, that can be used as the basis for understanding dynamics at the network level. This work focuses on planar piece-wise linear models that can mimic the firing response of several different cell types. Under constant current injection the periodic response and phase response curve (PRC) is calculated in closed form. A simple formula for the stability of a periodic orbit is found using Floquet theory. From the calculated PRC and the periodic orbit a phase interaction function is constructed that allows the investigation of phase-locked network states using the theory of weakly coupled oscillators. For large networks with global gap junction connectivity we develop a theory of strong coupling instabilities of the homogeneous, synchronous and splay state. For a piece-wise linear caricature of the Morris-Lecar model, with oscillations arising from a homoclinic bifurcation, we show that large amplitude oscillations in the mean membrane potential are organized around such unstable orbits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gap junction coupling is ubiquitous in the brain, particularly between the dendritic trees of inhibitory interneurons. Such direct non-synaptic interaction allows for direct electrical communication between cells. Unlike spike-time driven synaptic neural network models, which are event based, any model with gap junctions must necessarily involve a single neuron model that can represent the shape of an action potential. Indeed, not only do neurons communicating via gaps feel super-threshold spikes, but they also experience, and respond to, sub-threshold voltage signals. In this chapter we show that the so-called absolute integrate-and-fire model is ideally suited to such studies. At the single neuron level voltage traces for the model may be obtained in closed form, and are shown to mimic those of fast-spiking inhibitory neurons. Interestingly in the presence of a slow spike adaptation current the model is shown to support periodic bursting oscillations. For both tonic and bursting modes the phase response curve can be calculated in closed form. At the network level we focus on global gap junction coupling and show how to analyze the asynchronous firing state in large networks. Importantly, we are able to determine the emergence of non-trivial network rhythms due to strong coupling instabilities. To illustrate the use of our theoretical techniques (particularly the phase-density formalism used to determine stability) we focus on a spike adaptation induced transition from asynchronous tonic activity to synchronous bursting in a gap-junction coupled network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrical characteristics of CVD-diamond/n(+)-Si heterojunction devices are reported. Below 250 K the diodes show an unusual inversion of their rectification properties. This behavior is attributed to an enhanced tunneling component due to interface states, which change their occupation with the applied bias. The temperature dependence of the loss tangent shows two relaxation processes with different activation energies. These processes are likely related with two parallel charge transport mechanisms, one through the diamond grain, and the other through the grain boundary. (C) 2001 Elsevier Science B.V. Ah rights reserved.