673 resultados para Jump
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
Measuring and tracking athletic performance is crucial to an athlete’s development and the countermovement vertical jump is often used to measure athletic performance, particularly lower limb power. The linear power developed in the lower limb is estimated through jump height. However, the relationship between angular power, produced by the joints of the lower limb, and jump height is not well understood. This study examined the contributions of the kinetic value of angular power, and its kinematic component, angular velocity, of the lower limb joints to jump height in the countermovement vertical jump. Kinematic and kinetic data were gathered from twenty varsity-level basketball and volleyball athletes as they performed six maximal effort jumps in four arm swing conditions: no-arm involvement, single-non-dominant arm swing, single-dominant arm swing, and two-arm swing. The displacement of the whole body centre of mass, peak joint powers, peak angular velocity, and locations of the peaks as a percentage of the jump’s takeoff period, were computed. Linear regressions assessed the relationship of the variables to jump height. Results demonstrated that knee peak power (p = 0.001, ß = 0.363, r = 0.363), its location within takeoff period (p = 0.023, ß = -0.256, r = 0.256), and peak knee peak angular velocity (p = 0.005, ß = 0.310, r = 0.310) were moderately linked to increased jump height. Additionally, the location, within the takeoff period, of the peak angular velocities of the hip (p = 0.003, ß = -0.318, r = 0.419) and ankle (p = 0.011, ß = 0.270, r = 0.419) were positively linked to jump height. These results highlight the importance of training the velocity and timing of joint motion beyond traditional power training protocols as well as the importance of further investigation into appropriate testing protocol that is sensitive to the contributions by individual joints in maximal effort jumping.
Resumo:
A simple model based on, the maximum energy that an athlete can produce in a small time interval is used to describe the high and long jump. Conservation of angular momentum is used to explain why an athlete should, run horizontally to perform a vertical jump. Our results agree with world records. (c) 2005 American Association of Physics Teachers.
Resumo:
We aimed to analyse the effect of experience level in the psychophysiological response and specific fine motor skills of novel and expert parachute warfighters during a tactical combat parachute jump. We analysed blood oxygen saturation, heart rate, salivary cortisol, blood glucose, lactate and creatinkinase, leg strength, isometric hand-grip strength, cortical arousal, specific fine motor skills and cognitive anxiety, somatic anxiety and self-confident before and after a tactical combat parachute jump in 40 warfighters divided in two group, novel (n = 17) and expert group (n = 23). Novels presented a higher heart rate, lactate, cognitive anxiety, somatic anxiety and a lower self-confident than experts during the jump. We concluded that experience level has a direct effect on the psychophysiological response since novel paratroopers presented a higher psychophysiological response than compared to the expert ones, however this result neither affected the specific fine motor skills nor the muscle structure after a tactical combat parachute jump.
Resumo:
El propósito del presente estudio era generar los valores normativos de salto largo para niños de 9-17.9 años, e investigar las diferencias de sexo y grupo de edad
Resumo:
The established isotropic tomographic models show the features of subduction zones in terms of seismic velocity anomalies, but they are generally subjected to the generation of artifacts due to the lack of anisotropy in forward modelling. There is evidence for the significant influence of seismic anisotropy in the mid-upper mantle, especially for boundary layers like subducting slabs. As consequence, in isotropic models artifacts may be misinterpreted as compositional or thermal heterogeneities. In this thesis project the application of a trans-dimensional Metropolis-Hastings method is investigated in the context of anisotropic seismic tomography. This choice arises as a response to the important limitations introduced by traditional inversion methods which use iterative procedures of optimization of a function object of the inversion. On the basis of a first implementation of the Bayesian sampling algorithm, the code is tested with some cartesian two-dimensional models, and then extended to polar coordinates and dimensions typical of subduction zones, the main focus proposed for this method. Synthetic experiments with increasing complexity are realized to test the performance of the method and the precautions for multiple contexts, taking into account also the possibility to apply seismic ray-tracing iteratively. The code developed is tested mainly for 2D inversions, future extensions will allow the anisotropic inversion of seismological data to provide more realistic imaging of real subduction zones, less subjected to generation of artifacts.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física