948 resultados para Jackson, Allen
Resumo:
Studies focusing on communities of helminths from Brazilian lizards are increasing, but there are many blanks in the knowledge of parasitic fauna of wild fauna. This lack of knowledge hampers understanding of ecological and parasitological aspects of involved species. Moreover, the majority of research has focused on parasitic fauna of lizards from families Tropiduridae and Scincidae. Only a few studies have looked at lizards from the family Leiosauridae, including some species of Enyalius. This study presents data on the gastrointestinal parasite fauna of Enyalius perditus and their relationships with ecological aspects of hosts in a disturbed Atlantic rainforest area in the state of Minas Gerais, south-eastern Brazil. Two nematode species, Oswaldocruzia burseyi [(Molineidae) and Strongyluris oscari (Heterakidae) were found. Nematode species showed an aggregated distribution in this host population, with O. burseyi being more aggregated than S. oscari. The present study extends the range of occurrence of O. burseyi to the Brazilian continental area. © 2011 Cambridge University Press.
Resumo:
Pós-graduação em Geografia - IGCE
Resumo:
A three-laser heterodyne system was used to measure the frequencies of twelve optically pumped laser emissions from 13CH3OH in the far-infrared (FIR) region. These emissions, ranging from 54 to 142 μm, are reported with fractional uncertainties up to ±2 × 10-7 along with their polarization relative to the CO2 pump. Using the 9P32 and 10R14 CO2 lines, complete spectroscopic assignments for two laser systems were confirmed.
Resumo:
It is such a pleasure to honor innovation and accomplishment in the Institute of Agriculture and Natural Resources today through this 2007 Omtvedt Innovation Award. This award is made possible because of the generosity of Leone and the late Neal Harlan, great friends of the Institute of Agriculture and Natural Resources. The Harlans had the vision and the foresight to realize the importance of recognizing and supporting outstanding and innovative work in the Institute. They honored Irv Omtvedt on his retirement as Vice Chancellor of the Institute with a generous gift of funds to support the Omtvedt Innovation Awards. These awards recognize areas of strength and promise within the Institute, as well as innovative research and programming by our faculty, staff, and students.
Resumo:
Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.
Resumo:
The heifer development project was a five year project conducted on the site of the former Jackson County Farm north of Andrew, Iowa, for four years and on an area producer’s farm for the fifth year. Heifers arrived around December 1 each year and the average number of heifers each year was 43 with a low of 37 and high of 47. After a 30+ day warm-up period the heifers were put on a 112-day test from early January to late April. They were fed a shelled corn and legume-grass hay ration consisting of between 13% and 14% crude protein and a range of .44 to .58 megacal/pound of NEg over the five years. During the 112-day test heifers gained 1.86, 1.78, 1.5, 1.63 and 2.2 pounds per day, respectively, for years 1992 through 1996. The actual average breeding weight was less than the target weight in three years by 5, 12 and 22 pounds and exceeded the target weight in two year by 17 and 28 pounds. Estrus synchronization used a combination of MGA feeding and Lutalyse injection. Heifers were heat detected and bred 12 hours later for a three-day period. On the fourth day, all heifers not bred were mass inseminated. Heifers then ran with the cleanup bull for 58 days. The average synchronization response rate during the project was 79%. The overall pregnancy rates based on September pregnancy averaged 92%. The five year average total cost per head for heifer development was $286.18 or about $.85 per day. Feed and pasture costs averaged 61% of the total costs.
Resumo:
Fifty head of crossbred steers started grazing 51 acres of pasture on May 1 in a rotational grazing system using a variable density paddock system. Twenty-two head grazed 92 days, 27 grazed 140 days, and one steer died. A total of 11,922 pounds was produced on 5,804 animal-days of grazing. The average daily gain was 2.02 pounds for group 1 and 2.07 for group 2. The stocking rate for the first 92 days was .98 steers per acre and .53 for the final 48 days. The animal days of grazing per acre was 113 and the pounds of gain per acre was 233. Total return for land, labor and management for the demonstration was $2,829.76 or $55.49/acre.
Resumo:
The Andrew Jackson Demonstration Farm (AJDF) is located in central Jackson County in east central Iowa. A board of directors operates the farm for the purpose of demonstrating different production practices and management strategies. From 1996 to 1998 management intensive grazing practices and the grazing of stockers on a combination of permanent and tillable pasture have been demonstrated. Grazing strategies or practices demonstrated during these years included establishment of Eastern Gamagrass and Big Bluestem, variable density grazing, measuring forage on-offer, estimating dry matter intake, grazing corn, pasture renovation, and fencing and water systems. Production performance data were gathered for the three years stockers that were grazed. During this time the stockers averaged 121 animal days of grazing, a 1.1 head per acre stocking rate, a 1.85 pound average daily gain, and 228 pounds of gain per acre. The financial measures evaluated the value of gain on pasture and the pasture cost of the gain. The value of gain per pound was positive for 1996 and 1997 at $.58 and $.52 whereas in 1998 it was a -$.04. Pasture costs per pound of gain ranged from $.12 to $.16. Production performance is only one part of the profit picture when evaluating a stocker operation. Buysell margins are the other significant part that can greatly impact the profit potential of a summer grazing program.
Resumo:
The heifer development project took place the past four years on the site of the former Jackson County Farm north of Andrew, Iowa. Heifers arrived around December 1 with 38 heifers delivered for 1992, 44 for 1993, 46 for 1994, and 47 for 1995. After a 30+ day warm-up period, the heifers were put on a 112-day test from early January to late April. They were fed a shelled corn and legume-grass hay ration consisting of between 13% and 14% crude protein and .48, .58, .44, and .54 megacal/pound of NEg respectively for the years 1992 - 1995. During the 112-day test heifers gained 1.86, 1.78, 1.5, and 1.63 pounds per day respectively for years 1992 through 1995. The 1995 heifers averaged 853 pounds at breeding (22 pounds under target weight). This compares with previous years in which the breeding weight was less than target weight in two years by 5 and 12 pounds and exceeded the target weight in one year by 17 pounds. Estrus synchronization used a combination of MGA feeding and Lutalyse injection. Heifers were heatdetected and bred 12 hours later for a three-day period. On the fourth day, all heifers not bred were mass inseminated. Heifers then ran with the cleanup bull for 58 days. The synchronization response rate in 1995 was 83%, which compares with the three year previous average of 77%. The overall pregnancy rates based on September pregnancy exams were 94.6% in 1992, 93% in 1993, 91% in 1994, and 91.5% in 1995. Development costs for the 326 days in 1995 totaled $269.14 per heifer. This compares with the average of $286. 92 for the three previous years. The four-year average total cost per head for heifer development was $282.48, or about $.84 per day. Feed and pasture costs represented 58% of the total costs, or $.49 per day.
Resumo:
[Johann Ludolf Holst]