589 resultados para J920 Ergonomics
Resumo:
The aim of this study was to elucidate the thermophysiological effects of wearing lightweight non-military overt and covert personal body armour (PBA) in a hot and humid environment. Eight healthy males walked on a treadmill for 120 min at 22% of their heart rate reserve in a climate chamber simulating 31 °C (60%RH) wearing either no armour (control), overt or covert PBA in addition to a security guard uniform, in a randomised controlled crossover design. No significant difference between conditions at the end of each trial was observed in core temperature, heart rate or skin temperature (P > 0.05). Covert PBA produced a significantly greater amount of body mass change (−1.81 ± 0.44%) compared to control (−1.07 ± 0.38%, P = 0.009) and overt conditions (−1.27 ± 0.44%, P = 0.025). Although a greater change in body mass was observed after the covert PBA trial; based on the physiological outcome measures recorded, the heat strain encountered while wearing lightweight, non-military overt or covert PBA was negligible compared to no PBA. Practitioner summary The wearing of bullet proof vests or body armour is a requirement of personnel engaged in a wide range of occupations including police, security, customs and even journalists in theatres of war. This randomised controlled crossover study is the first to examine the thermophysiological effects of wearing lightweight non-military overt and covert personal body armour (PBA) in a hot and humid environment. We conclude that the heat strain encountered while wearing both overt and covert lightweight, non-military PBA was negligible compared to no PBA.
Resumo:
Collisions between different types of road users at intersections form a substantial component of the road toll. This paper presents an analysis of driver, cyclist, motorcyclist and pedestrian behaviour at intersections that involved the application of an integrated suite of ergonomics methods, the Event Analysis of Systemic Teamwork (EAST) framework, to on-road study data. EAST was used to analyse behaviour at three intersections using data derived from an on-road study of driver, cyclist, motorcyclist and pedestrian behaviour. The analysis shows the differences in behaviour and cognition across the different road user groups and pinpoints instances where this may be creating conflicts between different road users. The role of intersection design in creating these differences in behaviour and resulting conflicts is discussed. It is concluded that currently intersections are not designed in a way that supports behaviour across the four forms of road user studied. Interventions designed to improve intersection safety are discussed.
Resumo:
The 2nd International Digital Human Modeling (DHM) Symposium was held at the renowned University of Michigan Transportation Research Institute (UMTRI) in Ann Arbor, Michigan in June 11–13, 2013. The symposium was co-organised by the UMTRI and Penn State University, and endorsed by the IEA Technical Committee on Human Simulation and Virtual Environments. The conference built on the very successful inaugural event DHM2011 held in Lyon two years before; and a decade of digital human modelling conferences held under the auspices of SAE International. Practitioners and scientists from 13 countries gathered to present their state-of-the-art developments and applied research, besides discussing the most recent advances in human modelling and directions for future work in DHM...
Resumo:
Traffic crashes are the leading cause of death and injury among children aged between 4-14 years1,2 and premature graduation to adult seat belts2,3 and restraint misuse4 are common and known risk factors. Children are believed to prematurely graduate to adult belts and misuse the seat belt in booster seats if uncomfortable2,5,6. Although research has concentrated on educating parents and designing better restraints to reduce errors in use, comfort of the child in the restraint has not been studied. Currently there is no existing method for studying comfort in children in restraint systems, although self-report survey tools and pressure distribution mapping is commonly used to measure comfort among adult in vehicle seats. This poster presents preliminary results from work aimed at developing an appropriate method to measure comfort of children in vehicle restraint systems. The specific aims are to: 1. Examine the potential of using modified adult self-report/survey and pressure distribution mapping in children 2. Develop a video based, objective measure of comfort in children.
Resumo:
Suboptimal restraint use, particularly the incorrect use of restraints, is a significant and widespread problem among child vehicle occupants, and increases the risk of injury. Previous research has identified comfort as a potential factor influencing suboptimal restraint use. Both the real comfort experienced by the child and the parent’s perception of the child’s comfort are reported to influence the optimal use of restraints. Problems with real comfort may lead the child to misuse the restraint in their attempt to achieve better comfort whilst parent-perceived discomfort has been reported as a driver for premature graduation and inappropriate restraint choice. However, this work has largely been qualitative. There has been no research that objectively studies either the association between real and parental perceived comfort, or any association between comfort and suboptimal restraint use. One barrier to such studies is the absence of validated tools for quantifying real comfort in children. We aimed to develop methods to examine both real and parent-perceived comfort and examine their effects on suboptimal restraint use. We conducted online parent surveys (n=470) to explore what drives parental perceptions of their child’s comfort in restraint systems (study 1) and used data from field observation studies (n=497) to examine parent-perceived comfort and its relationship with observed restraint use (study 2). We developed methods to measure comfort in children in a laboratory setting (n=14) using video analysis to estimate a Discomfort Avoidance Behaviour (DAB) score, pressure mapping and adapted survey tools to differentiate between comfortable and induced discomfort conditions (study 3). Preliminary analysis of our recent online survey of Australian parents (study 1) indicates that 23% of parents report comfort as a consideration when making a decision to change restraints. Logistic regression modelling of data collected during the field observation study (study 2) revealed that parent-perceived discomfort was not significantly associated with premature graduation. Contrary to expectation, children of parents who reported that their child was comfortable were almost twice as likely to have been incorrectly restrained (p<0.01, 95% CI 1.24 - 2.77). In the laboratory study (study 3) we found our adapted survey tools did not provide a reliable measurement of real comfort among children. However our DAB score was able to differentiate between comfortable and induced discomfort conditions and correlated well with pressure mapping. Our results suggest that while some parents report concern about their child’s comfort, parent-reported comfort levels were not associated with restraint choice. If comfort is important for optimal restraint use, it is likely to be the real comfort of the child rather than that reported by the parent. The method we have developed for studying real comfort can be used in naturalistic studies involving child occupants to further understand this relationship. This work will be of interest to vehicle and child restraint manufacturers interested in improving restraint design for young occupants as well as researchers and other stakeholders interested in reducing the incidence of restraint misuse among children.
Resumo:
While the indirect and direct cost of occupational musculoskeletal disorders (MSD) causes a significant burden on the health system, lower back pain (LBP) is associated with a significant portion of MSD. In Australia, the highest prevalence of MSD exists for health care workers, such as nurses. The digital human model (DHM) Siemens JACK was used to investigate if hospital bed pushing, a simple task and hazard that is commonly associated with LBP, can be simulated and ergonomically assessed in a virtual environment. It was found that while JACK has implemented a range of common physical work assessment methods, the simulation of dynamic bed pushing remains a challenge due to the complex interface between the floor and wheels, which can only be insufficiently modelle
Resumo:
There are currently 23,500 level crossings in Australia, broadly divided into one of two categories: active level crossings which are fully automatic and have boom barriers, alarm bells, flashing lights, and pedestrian gates; and passive level crossings, which are not automatic and aim to control road and pedestrianised walkways solely with stop and give way signs. Active level crossings are considered to be the gold standard for transport ergonomics when grade separation (i.e. constructing an over- or underpass) is not viable. In Australia, the current strategy is to annually upgrade passive level crossings with active controls but active crossings are also associated with traffic congestion, largely as a result of extended closure times. The percentage of time level crossings are closed to road vehicles during peak periods increases with the rise in the frequency of train services. The popular perception appears to be that once a level crossing is upgraded, one is free to wipe their hands and consider the job done. However, there may also be environments where active protection is not enough, but where the setting may not justify the capital costs of grade separation. Indeed, the associated congestion and traffic delay could compromise safety by contributing to the risk taking behaviour by motorists and pedestrians. In these environments it is important to understand what human factor issues are present and ask the question of whether a one size fits all solution is indeed the most ergonomically sound solution for today’s transport needs.
Resumo:
Benchmarking was used to compare the Australian SIA’s (Safety Institute of Australia) OHS BoK with three different approaches to systemize the knowledge that should be taught by universities. The Australian Health and Safety Professionals Alliance (HaSPA) Core Body of Knowledge for Generalist OHS Professionals was benchmarked against three other international bodies of knowledge, the German Ergonomic Society’s Body of Knowledge Ergonomics – Core Definition, Object Catalogue and Research Domains, the IEEE Computer Society Software Engineering Body of Knowledge and the American ‘Association of Schools of Public Health’ Master’s Degree in Public Health Core Competency Model. It was found that quality, structure and content of the OHS BoK ranked lowest when compared with the other benchmarked documents. The HaSPA body of knowledge was ranked poorly when compared to the German Ergonomic Society’s Body of Knowledge for Ergonomics, IEEE Computer Society Software Engineering Body of Knowledge and the American Association of Schools of Public Health Core Competency Model. Analysis and discussion of the HaSPA BoK is important given its use as an audit tool for tertiary education in Australia. Furthermore the International Network of Safety & Health Practitioner Organisations (INSHPO) is apparently promoting the Australian SIA’s OHS BoK as the basis of an international standard.
Resumo:
Objective: The aim of this study was to develop a model capable of predicting variability in the mental workload experienced by frontline operators under routine and nonroutine conditions. Background: Excess workload is a risk that needs to be managed in safety-critical industries. Predictive models are needed to manage this risk effectively yet are difficult to develop. Much of the difficulty stems from the fact that workload prediction is a multilevel problem. Method: A multilevel workload model was developed in Study 1 with data collected from an en route air traffic management center. Dynamic density metrics were used to predict variability in workload within and between work units while controlling for variability among raters. The model was cross-validated in Studies 2 and 3 with the use of a high-fidelity simulator. Results: Reported workload generally remained within the bounds of the 90% prediction interval in Studies 2 and 3. Workload crossed the upper bound of the prediction interval only under nonroutine conditions. Qualitative analyses suggest that nonroutine events caused workload to cross the upper bound of the prediction interval because the controllers could not manage their workload strategically. Conclusion: The model performed well under both routine and nonroutine conditions and over different patterns of workload variation. Application: Workload prediction models can be used to support both strategic and tactical workload management. Strategic uses include the analysis of historical and projected workflows and the assessment of staffing needs. Tactical uses include the dynamic reallocation of resources to meet changes in demand.
Resumo:
The aim of this work was to study what kind of working grips people use to knit in Finland and decide if one grip is superior to others. I investigated how knitters have adopted their grips and how they experience their knitting. I also explored whether it is possible to change one's grip. To provide a theoretical basis for the research I observed knitting in terms of culture, skill and ergonomics. The first part of the study material comprised video recordings of the grips of 95 knitters together with background information collected via a questionnaire during the education of craft teachers at the University of Helsinki in spring 2004, 2005 and 2006. Using the data obtained I focused on three knitters, whose grip of the knitting needles clearly differed from the ergonomically good grip. In addition to them I interviewed one student, who had changed over to more ergonomic way of knitting after participating in the first part of this study. In this respect my study is a several events' case study. In order to analyse my data I used both qualitative and quantitative content analysis methods to complement each other. Most of my research participants had learned to knit in first years of elementary school or comprehensive school. Almost everyone had adopted the basics of knitting by imitating, and many of them had corrected "incorrect" positions from verbal instructions. Through practice the imitated position had gradually become the style unique to each knitter. The findings showed that students' background in knitting is quite varied due to the diverse level of craft teaching. This is reflected in their knitting grips and their interest in knitting. Students do not think that there is one right working grip. The most important thing is that working seems as fluent and relaxed as possible, at which point knitting is easy and flows freely. They often consider their own style so pleasing and well-functioning that they do not think there could be any room for improvement. This study pointed out that, while it is possible to change a knitter's working grip, there is a bigger challenge in acknowledging weaknesses in one's know how. According to the results of my research, the most common working grip among Finnish knitters' corresponds with the grip that has been described as ergonomically good. Over one third of all participants knitted this way. Hands keep the knitting firmly but without tension. The forefinger that guides the yarn from the ball rests gently against the knitting needle, and the yarn goes in front of the first joint of the forefinger. The position of the hands and loops is the same as in the ergonomically good grip, i.e. the fingertips of both hands and the loops are near the tips of the knitting needles, so that the fingers only have to move small distances. When knitters purl and plain, they commonly pick up the yarn from the back of the knitting needle in the same way as when knitting. While researching the common features of working grips I have learned what abnormal grips are like. Although I recognized many different ways to knit, all the peculiar grips were modifications of the continental way of knitting. The results of this study give a clear picture of those points knitters should focus their attention on in order to gain a good hold of the needles.
Resumo:
- Introduction Heat-based training (HT) is becoming increasingly popular as a means of inducing acclimation before athletic competition in hot conditions and/or to augment the training impulse beyond that achieved in thermo-neutral conditions. Importantly, current understanding of the effects of HT on regenerative processes such as sleep and the interactions with common recovery interventions remain unknown. This study aimed to examine sleep characteristics during five consecutive days of training in the heat with the inclusion of cold-water immersion (CWI) compared to baseline sleep patterns. - Methods Thirty recreationally-trained males completed HT in 32 ± 1 °C and 60% rh for five consecutive days. Conditions included: 1) 90 min cycling at 40 % power at VO2max (Pmax) (90CONT; n = 10); 90 min cycling at 40 % Pmax with a 20 min CWI (14 ± 1 °C; 90CWI; n = 10); and 30 min cycling alternating between 40 and 70 % Pmax every 3 min, with no recovery intervention (30HIT; n = 10). Sleep quality and quantity was assessed during HT and four nights of 'baseline' sleep (BASE). Actigraphy provided measures of time in and out of bed, sleep latency, efficiency, total time in bed and total time asleep, wake after sleep onset, number of awakenings, and wakening duration. Subjective ratings of sleep were also recorded using a 1-5 Likert scale. Repeated measures analysis of variance (ANOVA) was completed to determine effect of time and condition on sleep quality and quantity. Cohen's d effect sizes were also applied to determine magnitude and trends in the data. - Results Sleep latency, efficiency, total time in bed and number of awakenings were not significantly different between BASE and HT (P > 0.05). However, total time asleep was significantly reduced (P = 0.01; d = 1.46) and the duration periods of wakefulness after sleep onset was significantly greater during HT compared with BASE (P = 0.001; d = 1.14). Comparison between training groups showed latency was significantly higher for the 30HIT group compared to 90CONT (P = 0.02; d = 1.33). Nevertheless, there were no differences between training groups for sleep efficiency, total time in bed or asleep, wake after sleep onset, number of awakenings or awake duration (P > 0.05). Further, cold-water immersion recovery had no significant effect on sleep characteristics (P > 0.05). - Discussion Sleep plays an important role in athletic recovery and has previously been demonstrated to be influenced by both exercise training and thermal strain. Present data highlight the effect of HT on reduced sleep quality, specifically reducing total time asleep due to longer duration awake during awakenings after sleep onset. Importantly, although cold water recovery accelerates the removal of thermal load, this intervention did not blunt the negative effects of HT on sleep characteristics. - Conclusion Training in hot conditions may reduce both sleep quantity and quality and should be taken into consideration when administering this training intervention in the field.
Resumo:
Objective: We aimed to assess the impact of task demands and individual characteristics on threat detection in baggage screeners. Background: Airport security staff work under time constraints to ensure optimal threat detection. Understanding the impact of individual characteristics and task demands on performance is vital to ensure accurate threat detection. Method: We examined threat detection in baggage screeners as a function of event rate (i.e., number of bags per minute) and time on task across 4 months. We measured performance in terms of the accuracy of detection of Fictitious Threat Items (FTIs) randomly superimposed on X-ray images of real passenger bags. Results: Analyses of the percentage of correct FTI identifications (hits) show that longer shifts with high baggage throughput result in worse threat detection. Importantly, these significant performance decrements emerge within the first 10 min of these busy screening shifts only. Conclusion: Longer shift lengths, especially when combined with high baggage throughput, increase the likelihood that threats go undetected. Application: Shorter shift rotations, although perhaps difficult to implement during busy screening periods, would ensure more consistently high vigilance in baggage screeners and, therefore, optimal threat detection and passenger safety.
Resumo:
This investigation aimed to quantify metabolic rate when wearing an explosive ordnance disposal (EOD) ensemble (~33kg) during standing and locomotion; and determine whether the Pandolf load carriage equation accurately predicts metabolic rate when wearing an EOD ensemble during standing and locomotion. Ten males completed 8 trials with metabolic rate measured through indirect calorimetry. Walking in EOD at 2.5, 4.0 and 5.5km·h−1 was significantly (p < 0.05) greater than matched trials without the EOD ensemble by 49% (127W), 65% (213W) and 78% (345W), respectively. Mean bias (95% limits of agreement) between predicted and measured metabolism during standing, 2.5, 4 and 5.5km·h−1 were 47W (19 to 75W); −111W (−172 to −49W); −122W (−189 to −54W) and −158W (−245 to −72W), respectively. The Pandolf equation significantly underestimated measured metabolic rate during locomotion. These findings have practical implications for EOD technicians during training and operation and should be considered when developing maximum workload duration models and work-rest schedules.
Resumo:
Understanding of the shape and size of different features of the human body from scanned data is necessary for automated design and evaluation of product ergonomics. In this paper, a computational framework is presented for automatic detection and recognition of important facial feature regions, from scanned head and shoulder polyhedral models. A noise tolerant methodology is proposed using discrete curvature computations, band-pass filtering, and morphological operations for isolation of the primary feature regions of the face, namely, the eyes, nose, and mouth. Spatial disposition of the critical points of these isolated feature regions is analyzed for the recognition of these critical points as the standard landmarks associated with the primary facial features. A number of clinically identified landmarks lie on the facial midline. An efficient algorithm for detection and processing of the midline, using a point sampling technique, is also presented. The results obtained using data of more than 20 subjects are verified through visualization and physical measurements. A color based and triangle skewness based schemes for isolation of geometrically nonprominent features and ear region are also presented. [DOI: 10.1115/1.3330420]