1000 resultados para Isotope Geochemistry
Resumo:
The 'Paleocene/Eocene Thermal Maximum' or PETM (~55 Ma) was associated with dramatic warming of the oceans and atmosphere, pronounced changes in ocean circulation and chemistry, and upheaval of the global carbon cycle. Many relatively complete PETM sequences have by now been reported from around the world, but most are from ancient low- to midlatitude sites. ODP Leg 189 in the Tasman Sea recovered sediments from this critical phase in Earth history at Sites 1171 and 1172, potentially representing the southernmost PETM successions ever encountered (at ~70° to 65° S paleolatitude). Downhole and core logging data, in combination with dinoflagellate cyst biostratigraphy, magneto-stratigraphy, and stable isotope geochemistry indicate that the sequences at both sites were deposited in a high accumulation-rate, organic rich, marginal marine setting. Furthermore, Site 1172 indeed contains a fairly complete P-E transition, whereas at Site 1171, only the lowermost Eocene is recovered. However, at Site 1172, the typical PETM-indicative acme of the dinocyst Apectodinium was not recorded. We conclude that unfortunately, the critical latest Paleocene and PETM intervals are missing at Site 1172. We relate the missing section to a sea level driven hiatus and/or condensed section and recovery problems. Nevertheless, our integrated records provide a first-ever portrait of the trend toward, and aftermath of, the PETM in a marginal marine, southern high-latitude setting.
Resumo:
The authigenic carbonate mineral ikaite is specific of low-temperature high latitude environments. The depletion of ikaite carbon in 13C isotopes in most cases implies a causal relation of ikaite generation with methane geochemistry. In this paper we present new data on ikaite minerals in Holocene sediments sampled along the Yenisei channel at the southern (74°N) and northern (77°N) ends. Stable carbon isotopes of the ikaite crystals were studied in conjunction with the hydrochemistry and isotope geochemistry of the sediments. Pore water and natural gas samples were separated from sediments to describe the methane carbon isotope distribution pattern throughout two sedimentary sequences embedding the ikaite crystals of different isotope composition (-24 per mil and -42 per mil). The biogenic nature of the methane is indicated by 51 C values being as low as -104.4 per mil. In the case of the moderately depleted sample (-24 per mil) from the southern location the small-scale ikaite formation fits best into the concept of a 'closed» sediment system, with a limited diagenetic carbon dioxide source being present. In the second case, formation of highly abundant and isotopically depleted ikaite crystals (-42 per mil) were caused by upwards flux of biogenic methane from below. Contribution of two main carbon sources to the ikaite crystals was estimated by using a isotope-mass balance equation. Organic-derived CO2 constitutes the principal source in both samples, amounting to 50 % of the total carbon of the strongly depleted ikaite crystals (-42 per mil) sampled at the northern end and 83 % for the moderately (-24 per mil) depleted crystals from the southern end. Methane-derived CO2 comes to 42 % for the isotopically light ikaite crystals and to 9% for the isotopically heavy crystals. The importance of sediment lithology and diffusive transport for ikaite formation is emphazied.