964 resultados para Invariant Object Recognition


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rationale Cannabidiol, the main nonpsychotropic constituent of Cannabis sativa, possesses a large number of pharmacological effects including anticonvulsive, sedative, hypnotic, anxiolytic, antipsychotic, anti-inflammatory, and neuroprotective, as demonstrated in clinical and preclinical studies. Many neurodegenerative disorders involve cognitive deficits, and this has led to interest in whether cannabidiol could be useful in the treatment of memory impairment associated to these diseases. Objectives We used an animal model of cognitive impairment induced by iron overload in order to test the effects of cannabidiol in memory-impaired rats. Methods Rats received vehicle or iron at postnatal days 12-14. At the age of 2 months, they received an acute intraperitoneal injection of vehicle or cannabidiol (5.0 or 10.0 mg/kg) immediately after the training session of the novel object recognition task. In order to investigate the effects of chronic cannabidiol, iron-treated rats received daily intraperitoneal injections of cannabidiol for 14 days. Twenty-four hours after the last injection, they were submitted to object recognition training. Retention tests were performed 24 h after training. Results A single acute injection of cannabidiol at the highest dose was able to recover memory in iron-treated rats. Chronic cannabidiol improved recognition memory in iron-treated rats. Acute or chronic cannabidiol does not affect memory in control rats. Conclusions The present findings provide evidence suggesting the potential use of cannabidiol for the treatment of cognitive decline associated with neurodegenerative disorders. Further studies, including clinical trials, are warranted to determine the usefulness of cannabidiol in humans suffering from neurodegenerative disorders.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ultrasonography has an inherent noise pattern, called speckle, which is known to hamper object recognition for both humans and computers. Speckle noise is produced by the mutual interference of a set of scattered wavefronts. Depending on the phase of the wavefronts, the interference may be constructive or destructive, which results in brighter or darker pixels, respectively. We propose a filter that minimizes noise fluctuation while simultaneously preserving local gray level information. It is based on steps to attenuate the destructive and constructive interference present in ultrasound images. This filter, called interference-based speckle filter followed by anisotropic diffusion (ISFAD), was developed to remove speckle texture from B-mode ultrasound images, while preserving the edges and the gray level of the region. The ISFAD performance was compared with 10 other filters. The evaluation was based on their application to images simulated by Field II (developed by Jensen et al.) and the proposed filter presented the greatest structural similarity, 0.95. Functional improvement of the segmentation task was also measured, comparing rates of true positive, false positive and accuracy. Using three different segmentation techniques, ISFAD also presented the best accuracy rate (greater than 90% for structures with well-defined borders). (E-mail: fernando.okara@gmail.com) (C) 2012 World Federation for Ultrasound in Medicine & Biology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Visual correspondence is a key computer vision task that aims at identifying projections of the same 3D point into images taken either from different viewpoints or at different time instances. This task has been the subject of intense research activities in the last years in scenarios such as object recognition, motion detection, stereo vision, pattern matching, image registration. The approaches proposed in literature typically aim at improving the state of the art by increasing the reliability, the accuracy or the computational efficiency of visual correspondence algorithms. The research work carried out during the Ph.D. course and presented in this dissertation deals with three specific visual correspondence problems: fast pattern matching, stereo correspondence and robust image matching. The dissertation presents original contributions to the theory of visual correspondence, as well as applications dealing with 3D reconstruction and multi-view video surveillance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The research activity carried out during the PhD course was focused on the development of mathematical models of some cognitive processes and their validation by means of data present in literature, with a double aim: i) to achieve a better interpretation and explanation of the great amount of data obtained on these processes from different methodologies (electrophysiological recordings on animals, neuropsychological, psychophysical and neuroimaging studies in humans), ii) to exploit model predictions and results to guide future research and experiments. In particular, the research activity has been focused on two different projects: 1) the first one concerns the development of neural oscillators networks, in order to investigate the mechanisms of synchronization of the neural oscillatory activity during cognitive processes, such as object recognition, memory, language, attention; 2) the second one concerns the mathematical modelling of multisensory integration processes (e.g. visual-acoustic), which occur in several cortical and subcortical regions (in particular in a subcortical structure named Superior Colliculus (SC)), and which are fundamental for orienting motor and attentive responses to external world stimuli. This activity has been realized in collaboration with the Center for Studies and Researches in Cognitive Neuroscience of the University of Bologna (in Cesena) and the Department of Neurobiology and Anatomy of the Wake Forest University School of Medicine (NC, USA). PART 1. Objects representation in a number of cognitive functions, like perception and recognition, foresees distribute processes in different cortical areas. One of the main neurophysiological question concerns how the correlation between these disparate areas is realized, in order to succeed in grouping together the characteristics of the same object (binding problem) and in maintaining segregated the properties belonging to different objects simultaneously present (segmentation problem). Different theories have been proposed to address these questions (Barlow, 1972). One of the most influential theory is the so called “assembly coding”, postulated by Singer (2003), according to which 1) an object is well described by a few fundamental properties, processing in different and distributed cortical areas; 2) the recognition of the object would be realized by means of the simultaneously activation of the cortical areas representing its different features; 3) groups of properties belonging to different objects would be kept separated in the time domain. In Chapter 1.1 and in Chapter 1.2 we present two neural network models for object recognition, based on the “assembly coding” hypothesis. These models are networks of Wilson-Cowan oscillators which exploit: i) two high-level “Gestalt Rules” (the similarity and previous knowledge rules), to realize the functional link between elements of different cortical areas representing properties of the same object (binding problem); 2) the synchronization of the neural oscillatory activity in the γ-band (30-100Hz), to segregate in time the representations of different objects simultaneously present (segmentation problem). These models are able to recognize and reconstruct multiple simultaneous external objects, even in difficult case (some wrong or lacking features, shared features, superimposed noise). In Chapter 1.3 the previous models are extended to realize a semantic memory, in which sensory-motor representations of objects are linked with words. To this aim, the network, previously developed, devoted to the representation of objects as a collection of sensory-motor features, is reciprocally linked with a second network devoted to the representation of words (lexical network) Synapses linking the two networks are trained via a time-dependent Hebbian rule, during a training period in which individual objects are presented together with the corresponding words. Simulation results demonstrate that, during the retrieval phase, the network can deal with the simultaneous presence of objects (from sensory-motor inputs) and words (from linguistic inputs), can correctly associate objects with words and segment objects even in the presence of incomplete information. Moreover, the network can realize some semantic links among words representing objects with some shared features. These results support the idea that semantic memory can be described as an integrated process, whose content is retrieved by the co-activation of different multimodal regions. In perspective, extended versions of this model may be used to test conceptual theories, and to provide a quantitative assessment of existing data (for instance concerning patients with neural deficits). PART 2. The ability of the brain to integrate information from different sensory channels is fundamental to perception of the external world (Stein et al, 1993). It is well documented that a number of extraprimary areas have neurons capable of such a task; one of the best known of these is the superior colliculus (SC). This midbrain structure receives auditory, visual and somatosensory inputs from different subcortical and cortical areas, and is involved in the control of orientation to external events (Wallace et al, 1993). SC neurons respond to each of these sensory inputs separately, but is also capable of integrating them (Stein et al, 1993) so that the response to the combined multisensory stimuli is greater than that to the individual component stimuli (enhancement). This enhancement is proportionately greater if the modality-specific paired stimuli are weaker (the principle of inverse effectiveness). Several studies have shown that the capability of SC neurons to engage in multisensory integration requires inputs from cortex; primarily the anterior ectosylvian sulcus (AES), but also the rostral lateral suprasylvian sulcus (rLS). If these cortical inputs are deactivated the response of SC neurons to cross-modal stimulation is no different from that evoked by the most effective of its individual component stimuli (Jiang et al 2001). This phenomenon can be better understood through mathematical models. The use of mathematical models and neural networks can place the mass of data that has been accumulated about this phenomenon and its underlying circuitry into a coherent theoretical structure. In Chapter 2.1 a simple neural network model of this structure is presented; this model is able to reproduce a large number of SC behaviours like multisensory enhancement, multisensory and unisensory depression, inverse effectiveness. In Chapter 2.2 this model was improved by incorporating more neurophysiological knowledge about the neural circuitry underlying SC multisensory integration, in order to suggest possible physiological mechanisms through which it is effected. This endeavour was realized in collaboration with Professor B.E. Stein and Doctor B. Rowland during the 6 months-period spent at the Department of Neurobiology and Anatomy of the Wake Forest University School of Medicine (NC, USA), within the Marco Polo Project. The model includes four distinct unisensory areas that are devoted to a topological representation of external stimuli. Two of them represent subregions of the AES (i.e., FAES, an auditory area, and AEV, a visual area) and send descending inputs to the ipsilateral SC; the other two represent subcortical areas (one auditory and one visual) projecting ascending inputs to the same SC. Different competitive mechanisms, realized by means of population of interneurons, are used in the model to reproduce the different behaviour of SC neurons in conditions of cortical activation and deactivation. The model, with a single set of parameters, is able to mimic the behaviour of SC multisensory neurons in response to very different stimulus conditions (multisensory enhancement, inverse effectiveness, within- and cross-modal suppression of spatially disparate stimuli), with cortex functional and cortex deactivated, and with a particular type of membrane receptors (NMDA receptors) active or inhibited. All these results agree with the data reported in Jiang et al. (2001) and in Binns and Salt (1996). The model suggests that non-linearities in neural responses and synaptic (excitatory and inhibitory) connections can explain the fundamental aspects of multisensory integration, and provides a biologically plausible hypothesis about the underlying circuitry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The term Ambient Intelligence (AmI) refers to a vision on the future of the information society where smart, electronic environment are sensitive and responsive to the presence of people and their activities (Context awareness). In an ambient intelligence world, devices work in concert to support people in carrying out their everyday life activities, tasks and rituals in an easy, natural way using information and intelligence that is hidden in the network connecting these devices. This promotes the creation of pervasive environments improving the quality of life of the occupants and enhancing the human experience. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. Ambient intelligent systems are heterogeneous and require an excellent cooperation between several hardware/software technologies and disciplines, including signal processing, networking and protocols, embedded systems, information management, and distributed algorithms. Since a large amount of fixed and mobile sensors embedded is deployed into the environment, the Wireless Sensor Networks is one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes which can be deployed in a target area to sense physical phenomena and communicate with other nodes and base stations. These simple devices typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). WNS promises of revolutionizing the interactions between the real physical worlds and human beings. Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. To fully exploit the potential of distributed sensing approaches, a set of challengesmust be addressed. Sensor nodes are inherently resource-constrained systems with very low power consumption and small size requirements which enables than to reduce the interference on the physical phenomena sensed and to allow easy and low-cost deployment. They have limited processing speed,storage capacity and communication bandwidth that must be efficiently used to increase the degree of local ”understanding” of the observed phenomena. A particular case of sensor nodes are video sensors. This topic holds strong interest for a wide range of contexts such as military, security, robotics and most recently consumer applications. Vision sensors are extremely effective for medium to long-range sensing because vision provides rich information to human operators. However, image sensors generate a huge amount of data, whichmust be heavily processed before it is transmitted due to the scarce bandwidth capability of radio interfaces. In particular, in video-surveillance, it has been shown that source-side compression is mandatory due to limited bandwidth and delay constraints. Moreover, there is an ample opportunity for performing higher-level processing functions, such as object recognition that has the potential to drastically reduce the required bandwidth (e.g. by transmitting compressed images only when something ‘interesting‘ is detected). The energy cost of image processing must however be carefully minimized. Imaging could play and plays an important role in sensing devices for ambient intelligence. Computer vision can for instance be used for recognising persons and objects and recognising behaviour such as illness and rioting. Having a wireless camera as a camera mote opens the way for distributed scene analysis. More eyes see more than one and a camera system that can observe a scene from multiple directions would be able to overcome occlusion problems and could describe objects in their true 3D appearance. In real-time, these approaches are a recently opened field of research. In this thesis we pay attention to the realities of hardware/software technologies and the design needed to realize systems for distributed monitoring, attempting to propose solutions on open issues and filling the gap between AmI scenarios and hardware reality. The physical implementation of an individual wireless node is constrained by three important metrics which are outlined below. Despite that the design of the sensor network and its sensor nodes is strictly application dependent, a number of constraints should almost always be considered. Among them: • Small form factor to reduce nodes intrusiveness. • Low power consumption to reduce battery size and to extend nodes lifetime. • Low cost for a widespread diffusion. These limitations typically result in the adoption of low power, low cost devices such as low powermicrocontrollers with few kilobytes of RAMand tenth of kilobytes of program memory with whomonly simple data processing algorithms can be implemented. However the overall computational power of the WNS can be very large since the network presents a high degree of parallelism that can be exploited through the adoption of ad-hoc techniques. Furthermore through the fusion of information from the dense mesh of sensors even complex phenomena can be monitored. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas:Low Power Video Sensor Node and Video Processing Alghoritm and Multimodal Surveillance . Low Power Video Sensor Nodes and Video Processing Alghoritms In comparison to scalar sensors, such as temperature, pressure, humidity, velocity, and acceleration sensors, vision sensors generate much higher bandwidth data due to the two-dimensional nature of their pixel array. We have tackled all the constraints listed above and have proposed solutions to overcome the current WSNlimits for Video sensor node. We have designed and developed wireless video sensor nodes focusing on the small size and the flexibility of reuse in different applications. The video nodes target a different design point: the portability (on-board power supply, wireless communication), a scanty power budget (500mW),while still providing a prominent level of intelligence, namely sophisticated classification algorithmand high level of reconfigurability. We developed two different video sensor node: The device architecture of the first one is based on a low-cost low-power FPGA+microcontroller system-on-chip. The second one is based on ARM9 processor. Both systems designed within the above mentioned power envelope could operate in a continuous fashion with Li-Polymer battery pack and solar panel. Novel low power low cost video sensor nodes which, in contrast to sensors that just watch the world, are capable of comprehending the perceived information in order to interpret it locally, are presented. Featuring such intelligence, these nodes would be able to cope with such tasks as recognition of unattended bags in airports, persons carrying potentially dangerous objects, etc.,which normally require a human operator. Vision algorithms for object detection, acquisition like human detection with Support Vector Machine (SVM) classification and abandoned/removed object detection are implemented, described and illustrated on real world data. Multimodal surveillance: In several setup the use of wired video cameras may not be possible. For this reason building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. Energy efficiency for wireless smart camera networks is one of the major efforts in distributed monitoring and surveillance community. For this reason, building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. The Pyroelectric Infra-Red (PIR) sensors have been used to extend the lifetime of a solar-powered video sensor node by providing an energy level dependent trigger to the video camera and the wireless module. Such approach has shown to be able to extend node lifetime and possibly result in continuous operation of the node.Being low-cost, passive (thus low-power) and presenting a limited form factor, PIR sensors are well suited for WSN applications. Moreover techniques to have aggressive power management policies are essential for achieving long-termoperating on standalone distributed cameras needed to improve the power consumption. We have used an adaptive controller like Model Predictive Control (MPC) to help the system to improve the performances outperforming naive power management policies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Questa tesi si inserisce nel filone di ricerca dell'elaborazione di dati 3D, e in particolare nella 3D Object Recognition, e delinea in primo luogo una panoramica sulle principali rappresentazioni strutturate di dati 3D, le quali rappresentano una prerogativa necessaria per implementare in modo efficiente algoritmi di processing di dati 3D, per poi presentare un nuovo algoritmo di 3D Keypoint Detection che è stato sviluppato e proposto dal Computer Vision Laboratory dell'Università di Bologna presso il quale ho effettuato la mia attività di tesi.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La tesi presenta un lavoro svolto nell'ambito dell'object recognition, in particolare riguardante l'analisi dei descrittori locali SIFT e BRIEF. Dopo aver implementato BRIEF, sono stati realizzati numerosi test al fine di presentare un esauriente confronto prestazionale tra i due descrittori. Infine, è stato realizzato un applicativo per la localizzazione e il riconoscimento di oggetti su ripiani.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ziel der Arbeit ist die Analyse von Prinzipien der Konturintegration im menschlichen visuellen System. Die perzeptuelle Verbindung benachbarter Teile in einer visuellen Szene zu einem Ganzen wird durch zwei gestalttheoretisch begründete Propositionen gekennzeichnet, die komplementäre lokale Mechanismen der Konturintegration beschreiben. Das erste Prinzip der Konturintegration fordert, dass lokale Ähnlichkeit von Elementen in einem anderen Merkmal als Orientierung nicht hinreicht für die Entdeckung von Konturen, sondern ein zusätzlicher statistischer Merkmalsunterschied von Konturelementen und Umgebung vorliegen muss, um Konturentdeckung zu ermöglichen. Das zweite Prinzip der Konturintegration behauptet, dass eine kollineare Ausrichtung von Konturelementen für Konturintegration hinreicht, und es bei deren Vorliegen zu robuster Konturintegrationsleistung kommt, auch wenn die lokalen merkmalstragenden Elemente in anderen Merkmalen in hohem Maße zufällig variieren und damit keine nachbarschaftliche Ähnlichkeitsbeziehung entlang der Kontur aufweisen. Als empirische Grundlage für die beiden vorgeschlagenen Prinzipien der Konturintegration werden drei Experimente berichtet, die zunächst die untergeordnete Rolle globaler Konturmerkmale wie Geschlossenheit bei der Konturentdeckung aufweisen und daraufhin die Bedeutung lokaler Mechanismen für die Konturintegration anhand der Merkmale Kollinearität, Ortsfrequenz sowie der spezifischen Art der Interaktion zwischen beiden Merkmalen beleuchten. Im ersten Experiment wird das globale Merkmal der Geschlossenheit untersucht und gezeigt, dass geschlossene Konturen nicht effektiver entdeckt werden als offene Konturen. Das zweite Experiment zeigt die Robustheit von über Kollinearität definierten Konturen über die zufällige Variation im Merkmal Ortsfrequenz entlang der Kontur und im Hintergrund, sowie die Unmöglichkeit der Konturintegration bei nachbarschaftlicher Ähnlichkeit der Konturelemente, wenn Ähnlichkeit statt über kollineare Orientierung über gleiche Ortsfrequenzen realisiert ist. Im dritten Experiment wird gezeigt, dass eine redundante Kombination von kollinearer Orientierung mit einem statistischen Unterschied im Merkmal Ortsfrequenz zu erheblichen Sichtbarkeitsgewinnen bei der Konturentdeckung führt. Aufgrund der Stärke der Summationswirkung wird vorgeschlagen, dass durch die Kombination mehrerer Hinweisreize neue kortikale Mechanismen angesprochen werden, die die Konturentdeckung unterstützen. Die Resultate der drei Experimente werden in den Kontext aktueller Forschung zur Objektwahrnehmung gestellt und ihre Bedeutung für die postulierten allgemeinen Prinzipien visueller Gruppierung in der Konturintegration diskutiert. Anhand phänomenologischer Beispiele mit anderen Merkmalen als Orientierung und Ortsfrequenz wird gezeigt, dass die gefundenen Prinzipien Generalisierbarkeit für die Verarbeitung von Konturen im visuellen System beanspruchen können.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Generic object recognition is an important function of the human visual system and everybody finds it highly useful in their everyday life. For an artificial vision system it is a really hard, complex and challenging task because instances of the same object category can generate very different images, depending of different variables such as illumination conditions, the pose of an object, the viewpoint of the camera, partial occlusions, and unrelated background clutter. The purpose of this thesis is to develop a system that is able to classify objects in 2D images based on the context, and identify to which category the object belongs to. Given an image, the system can classify it and decide the correct categorie of the object. Furthermore the objective of this thesis is also to test the performance and the precision of different supervised Machine Learning algorithms in this specific task of object image categorization. Through different experiments the implemented application reveals good categorization performances despite the difficulty of the problem. However this project is open to future improvement; it is possible to implement new algorithms that has not been invented yet or using other techniques to extract features to make the system more reliable. This application can be installed inside an embedded system and after trained (performed outside the system), so it can become able to classify objects in a real-time. The information given from a 3D stereocamera, developed inside the department of Computer Engineering of the University of Bologna, can be used to improve the accuracy of the classification task. The idea is to segment a single object in a scene using the depth given from a stereocamera and in this way make the classification more accurate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Brain mechanisms associated with artistic talents or skills are still not well understood. This exploratory study investigated differences in brain activity of artists and non-artists while drawing previously presented perspective line-drawings from memory and completing other drawing-related tasks. Electroencephalography (EEG) data were analyzed for power in the frequency domain by means of a Fast Fourier Transform (FFT). Low Resolution Brain Electromagnetic Tomography (LORETA) was applied to localize emerging significances. During drawing and related tasks, decreased power was seen in artists compared to non-artists mainly in upper alpha frequency ranges. Decreased alpha power is often associated with an increase in cognitive functioning and may reflect enhanced semantic memory performance and object recognition processes in artists. These assumptions are supported by the behavioral data assessed in this study and complement previous findings showing increased parietal activations in non-artists compared to artists while drawing. However, due to the exploratory nature of the analysis, additional confirmatory studies will be needed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Effects of the dihydropyridine, nimodipine, an antagonist at L-type calcium channels, on the memory loss in rats caused by long term alcohol consumption were examined. Either a single dose of nimodipine or 2 weeks of repeated administration was given prior to withdrawal from 8 months of alcohol consumption. Memory was measured by the object recognition test and the T maze. Both nimodipine treatments prevented the memory deficits when these were measured between 1 and 2 months after alcohol withdrawal. At the end of the memory testing, 2 months after cessation of chronic alcohol consumption, glucocorticoid concentrations were increased in specific regions of rat brain without changes in plasma concentrations. Both nimodipine treatment schedules substantially reduced these rises in brain glucocorticoid. The data indicate that blockade of L-type calcium channels prior to alcohol withdrawal protects against the memory deficits caused by prolonged alcohol intake. This shows that specific drug treatments, such as nimodipine, given over the acute withdrawal phase, can prevented the neuronal changes responsible for subsequent adverse effects of long term consumption of alcohol. The results also suggest the possibility that regional brain glucocorticoid increases may be involved in the adverse effects of long term alcohol intake on memory. Such local changes in brain glucocorticoid levels would have major effects on neuronal function. The studies indicate that L-type calcium channels and brain glucocorticoid levels could form new targets for the treatment of cognitive deficits in alcoholics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Studies were carried out to test the hypothesis that administration of a glucocorticoid Type II receptor antagonist, mifepristone (RU38486), just prior to withdrawal from chronic alcohol treatment, would prevent the consequences of the alcohol consumption and withdrawal in mice. MATERIALS AND METHODS: The effects of administration of a single intraperitoneal dose of mifepristone were examined on alcohol withdrawal hyperexcitability. Memory deficits during the abstinence phase were measured using repeat exposure to the elevated plus maze, the object recognition test, and the odor habituation/discrimination test. Neurotoxicity in the hippocampus and prefrontal cortex was examined using NeuN staining. RESULTS: Mifepristone reduced, though did not prevent, the behavioral hyperexcitability seen in TO strain mice during the acute phase of alcohol withdrawal (4 hours to 8 hours after cessation of alcohol consumption) following chronic alcohol treatment via liquid diet. There were no alterations in anxiety-related behavior in these mice at 1 week into withdrawal, as measured using the elevated plus maze. However, changes in behavior during a second exposure to the elevated plus maze 1 week later were significantly reduced by the administration of mifepristone prior to withdrawal, indicating a reduction in the memory deficits caused by the chronic alcohol treatment and withdrawal. The object recognition test and the odor habituation and discrimination test were then used to measure memory deficits in more detail, at between 1 and 2 weeks after alcohol withdrawal in C57/BL10 strain mice given alcohol chronically via the drinking fluid. A single dose of mifepristone given at the time of alcohol withdrawal significantly reduced the memory deficits in both tests. NeuN staining showed no evidence of neuronal loss in either prefrontal cortex or hippocampus after withdrawal from chronic alcohol treatment. CONCLUSIONS: The results suggest mifepristone may be of value in the treatment of alcoholics to reduce their cognitive deficits.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: A key aspect of representations for object recognition and scene analysis in the ventral visual stream is the spatial frame of reference, be it a viewer-centered, object-centered, or scene-based coordinate system. Coordinate transforms from retinocentric space to other reference frames involve combining neural visual responses with extraretinal postural information. METHODOLOGY/PRINCIPAL FINDINGS: We examined whether such spatial information is available to anterior inferotemporal (AIT) neurons in the macaque monkey by measuring the effect of eye position on responses to a set of simple 2D shapes. We report, for the first time, a significant eye position effect in over 40% of recorded neurons with small gaze angle shifts from central fixation. Although eye position modulates responses, it does not change shape selectivity. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that spatial information is available in AIT for the representation of objects and scenes within a non-retinocentric frame of reference. More generally, the availability of spatial information in AIT calls into questions the classic dichotomy in visual processing that associates object shape processing with ventral structures such as AIT but places spatial processing in a separate anatomical stream projecting to dorsal structures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Higher visual functions can be defined as cognitive processes responsible for object recognition, color and shape perception, and motion detection. People with impaired higher visual functions after unilateral brain lesion are often tested with paper pencil tests, but such tests do not assess the degree of interaction between the healthy brain hemisphere and the impaired one. Hence, visual functions are not tested separately in the contralesional and ipsilesional visual hemifields. METHODS: A new measurement setup, that involves real-time comparisons of shape and size of objects, orientation of lines, speed and direction of moving patterns, in the right or left visual hemifield, has been developed. The setup was implemented in an immersive environment like a hemisphere to take into account the effects of peripheral and central vision, and eventual visual field losses. Due to the non-flat screen of the hemisphere, a distortion algorithm was needed to adapt the projected images to the surface. Several approaches were studied and, based on a comparison between projected images and original ones, the best one was used for the implementation of the test. Fifty-seven healthy volunteers were then tested in a pilot study. A Satisfaction Questionnaire was used to assess the usability of the new measurement setup. RESULTS: The results of the distortion algorithm showed a structural similarity between the warped images and the original ones higher than 97%. The results of the pilot study showed an accuracy in comparing images in the two visual hemifields of 0.18 visual degrees and 0.19 visual degrees for size and shape discrimination, respectively, 2.56° for line orientation, 0.33 visual degrees/s for speed perception and 7.41° for recognition of motion direction. The outcome of the Satisfaction Questionnaire showed a high acceptance of the battery by the participants. CONCLUSIONS: A new method to measure higher visual functions in an immersive environment was presented. The study focused on the usability of the developed battery rather than the performance at the visual tasks. A battery of five subtasks to study the perception of size, shape, orientation, speed and motion direction was developed. The test setup is now ready to be tested in neurological patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aviation security strongly depends on screeners' performance in the detection of threat objects in x-ray images of passenger bags. We examined for the first time the effects of stress and stress-induced cortisol increases on detection performance of hidden weapons in an x-ray baggage screening task. We randomly assigned 48 participants either to a stress or a nonstress group. The stress group was exposed to a standardized psychosocial stress test (TSST). Before and after stress/nonstress, participants had to detect threat objects in a computer-based object recognition test (X-ray ORT). We repeatedly measured salivary cortisol and X-ray ORT performance before and after stress/nonstress. Cortisol increases in reaction to psychosocial stress induction but not to nonstress independently impaired x-ray detection performance. Our results suggest that stress-induced cortisol increases at peak reactivity impair x-ray screening performance.