875 resultados para Intracellular Cholesterol
Resumo:
Liposomes composed of cationic lipids have become very popular gene delivery vehicles. A great deal of research is being pursued to make efficient vectors by varying their molecular architecture. Cholesterol being ubiquitous component in most of the animal cell membranes is increasingly being used as a hydrophobic segment of synthetic cationic lipids. In this review we describe various cholesterol based cationic lipids and focus on the effect of modifying various structural segments like linker and the head group of the cationic lipids on gene transfection efficiency with a special emphasis on the importance of ether linkage between cholesteryl backbone and the polar head group. Interaction of cationic cholesteryl lipids with dipalmitylphosphatidycholine membranes is also discussed here. Apart from cholesterol being an attractive scaffold in the drug/gene delivery vehicles, certain cholesteryl derivatives have also been shown to be attractive room temperature liquid-crystalline materials.
Resumo:
Methods which disperse single-walled carbon nanotubes (SWNTs) in water as `debundled', while maintaining their unique physical properties are highly useful. We present here a family of cationic cholesterol compounds (Chol(+)) {Cholest-5en-3 beta-oxyethyl pyridinium bromide (Chol-PB+), Cholest-5en-3 beta-oxyethyl N-methyl pyrrolidinium bromide (Chol-MPB+), Cholest-5en-3 beta-oxyethyl N-methyl morpholinium bromide (Chol-MMB+) and Cholest-5en-3 beta-oxyethyl diazabicyclo octanium bromide (Chol-DOB+)}. Each of these could be easily dispersed in water. The resulting cationic cholesterol (Chol(+)) suspensions solubilized single-walled carbon nanotubes (SWCNTs) by the non-specific physical adsorption of Chol(+) to form stable, transparent, dark aqueous suspensions at room temperature. Electron microscopy reveals the existence of highly segregated CNTs in these samples. Zeta potential measurements showed an increase in potential of cationic cholesterol aggregates on addition of CNTs. The CNT-Chol(+) suspensions were capable of forming stable complexes with genes (DNA) efficiently. The release of double-helical DNA from such CNT-Chol(+) complexes could be induced upon the addition of anionic micellar solution of SDS. Furthermore, the CNT-based DNA complexes containing cationic cholesterol aggregates showed higher stability in fetal bovine serum media at physiological conditions. Confocal studies confirm that CNT-Chol(+) formulations adhere to HeLa cell surfaces and get internalized more efficiently than the cationic cholesterol suspensions alone (devoid of any CNTs). These cationic cholesterol-CNT suspensions therefore appear to be a promising system for further use in biological applications.
Resumo:
We present here a series of cholesterol based cationic lipid suspensions that solubilize single-walled carbon nanotubes (SWCNT) efficiently in water. Each cationic lipid formulation was characterized in terms of their energy minimized molecular structures, bilayer widths of the aggregates based on X-ray diffraction. Then these aggregates were investigated pertaining to their DNA binding and release efficiency, effect of CNT inclusion on the stability of cationic cholesterol lipid-DNA complexes, Zeta potential values and changes in the chiro-optical property of DNA, effect on Raman spectral shift and changes in morphology by SEM and AFM. Each cationic lipid formulation was optimized for the amount of SWCNT solubilized in water, lipid-DNA ratio, amount of the plasmid DNA that can be transfected and the effect on the cellular toxicity. The resulting SWCNT-lipid formulations were then used for in vitro transfection of pEGFP-C3 in A549 (human alveolar basal epithelial) cells and HeLa (human cervical cancer) cells. Advantageously, the CNT-loaded formulations confer an excellent transfection efficiency even in high percentages of blood serum and showed significantly better gene transfer efficiency compared to one of the potent, well-known commercial transfection reagent, Lipofectamine2000.
Resumo:
Taurine conjugates of two cholic acid derived oligomers with different spacers between the cholic acid units were synthesized. These molecules self-assemble in aqueous media. The critical micelle concentration (CMC) values were measured by using fluorescence spectroscopic analysis and the aggregates were characterized by dynamic light scattering and electron microscopy. The cooperativity of the cholic acid units in these tetramers to solubilize cholesterol was investigated. The ability of these molecules to act as nanocarriers for liphophilic dyes was also studied.
Resumo:
During the course of infection, Salmonella has to face several potentially lethal environmental conditions, one such being acidic pH. The ability to sense and respond to the acidic pH is crucial for the survival and replication of Salmonella. The physiological role of one gene (STM1485) involved in this response, which is upregulated inside the host cells (by 90- to 113-fold) is functionally characterized in Salmonella pathogenesis. In vitro, the DSTM1485 neither exhibited any growth defect at pH 4.5 nor any difference in the acid tolerance response. The DSTM1485 was compromised in its capacity to proliferate inside the host cells and complementation with STM1485 gene restored its virulence. We further demonstrate that the surface translocation of Salmonella pathogenicity island-2 (SPI-2) encoded translocon proteins, SseB and SseD were reduced in the DSTM1485. The increase in co-localization of this mutant with lysosomes was also observed. In addition, the DSTM1485 displayed significantly reduced competitive indices (CI) in spleen, liver and mesenteric lymph nodes in murine typhoid model when infected by intra-gastric route. Based on these results, we conclude that the acidic pH induced STM1485 gene is essential for intracellular replication of Salmonella.
Resumo:
Curcumin, a principal component of turmeric, acts as an immunomodulator regulating the host defenses in response to a diseased condition. The role of curcumin in controlling certain infectious diseases is highly controversial. It is known to alleviate symptoms of Helicobacter pylori infection and exacerbate that of Leishmania infection. We have evaluated the role of curcumin in modulating the fate of various intracellular bacterial pathogens. We show that pretreatment of macrophages with curcumin attenuates the infections caused by Shigella flexneri (clinical isolates) and Listeria monocytogenes and aggravates those caused by Salmonella enterica serovar Typhi CT18 (a clinical isolate), Salmonella enterica serovar Typhimurium, Staphylococcus aureus, and Yersinia enterocolitica. Thus, the antimicrobial nature of curcumin is not a general phenomenon. It modulated the intracellular survival of cytosolic (S. flexneri and L. monocytogenes) and vacuolar (Salmonella spp., Y. enterocolitica, and S. aureus) bacteria in distinct ways. Through colocalization experiments, we demonstrated that curcumin prevented the active phagosomal escape of cytosolic pathogens and enhanced the active inhibition of lysosomal fusion by vacuolar pathogens. A chloroquine resistance assay confirmed that curcumin retarded the escape of the cytosolic pathogens, thus reducing their inter- and intracellular spread. We have demonstrated that the membrane-stabilizing activity of curcumin is crucial for its differential effect on the virulence of the bacteria.
Resumo:
Background: Immunotherapy is fast emerging as one of the leading modes of treatment of cancer, in combination with chemotherapy and radiation. Use of immunotoxins, proteins bearing a cell-surface receptor-specific antibody conjugated to a toxin, enhances the efficacy of cancer treatment. The toxin Abrin, isolated from the Abrus precatorius plant, is a type II ribosome inactivating protein, has a catalytic efficiency higher than any other toxin belonging to this class of proteins but has not been exploited much for use in targeted therapy. Methods: Protein synthesis assay using (3)H] L-leucine incorporation; construction and purification of immunotoxin; study of cell death using flow cytometry; confocal scanning microscopy and sub-cellular fractionation with immunoblot analysis of localization of proteins. Results: We used the recombinant A chain of abrin to conjugate to antibodies raised against the human gonadotropin releasing hormone receptor. The conjugate inhibited protein synthesis and also induced cell death specifically in cells expressing the receptor. The conjugate exhibited differences in the kinetics of inhibition of protein synthesis, in comparison to abrin, and this was attributed to differences in internalization and trafficking of the conjugate within the cells. Moreover, observations of sequestration of the A chain into the nucleus of cells treated with abrin but not in cells treated with the conjugate reveal a novel pathway for the movement of the conjugate in the cells. Conclusions: This is one of the first reports on nuclear localization of abrin, a type II RIP. The immunotoxin mAb F1G4-rABRa-A, generated in our laboratory, inhibits protein synthesis specifically on cells expressing the gonadotropin releasing hormone receptor and the pathway of internalization of the protein is distinct from that seen for abrin.
Resumo:
A novel polyelectrolyte nanocapsule system composed of biopolymers, chitosan and heparin has been fabricated by the layer-by-layer technique on silica nanoparticles followed by dissolution of the silica core. The nanocapsules were of the size range 200 +/- 20 nm and loaded with the positively charged anticancer drug doxorubicin with an efficiency of 89%. The loading of the drug into the capsule happens by virtue of the pH-responsive property of the capsule wall, which is determined by the pKa of the polyelectrolytes. As the pH is varied, about 64% of the drug is released in acidic pH while 77% is released in neutral pH. The biocompatibility, efficiency of drug loading, and enhanced bioavailability of the capsule system was confirmed by MTT assay and in vivo biodistribution studies.
Resumo:
Despite considerable research to develop carbon based materials for biomedical applications, the toxicity of carbon remains a major concern. In order to address this issue as well as to investigate the cell fate processes of neural cells from the perspective of neural tissue engineering applications, the in vitro cytocompatibility of polyacrylonitrile (PAN) derived continuous carbon nanofibers and PAN derived carbon thin films were investigated both quantitatively and qualitatively using in vitro biochemical assays followed by extensive flow cytometry analysis. The experimental results of Schwann cell fate, i.e. cell proliferation, cell metabolic activity and cell apoptosis on amorphous carbon substrates are discussed in reference to the time dependent evolution of intracellular oxidative stress. Apart from providing evidence that an electrospun carbon nanofibrous substrate can physically guide the cultured Schwann cells, this study suggested that continuous carbon nanofibers and amorphous carbon films are not cytotoxic in vitro and do not significantly induce apoptosis of Schwann cells, but in fact even facilitate their proliferation and growth.
Resumo:
Background: Six new cationic gemini lipids based on cholesterol possessing different positional combinations of hydroxyethyl (-CH2CH2OH) and oligo-oxyethylene -(CH2CH2O)(n)- moieties were synthesized. For comparison the corresponding monomeric lipid was also prepared. Each new cationic lipid was found to form stable, clear suspensions in aqueous media. Methodology/Principal Findings: To understand the nature of the individual lipid aggregates, we have studied the aggregation properties using transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential measurements and X-ray diffraction (XRD). We studied the lipid/DNA complex (lipoplex) formation and the release of the DNA from such lipoplexes using ethidium bromide. These gemini lipids in presence of a helper lipid, 1, 2-dioleoyl phophatidyl ethanol amine (DOPE) showed significant enhancements in the gene transfection compared to several commercially available transfection agents. Cholesterol based gemini having -CH2-CH2-OH groups at the head and one oxyethylene spacer was found to be the most effective lipid, which showed transfection activity even in presence of high serum levels (50%) greater than Effectene, one of the potent commercially available transfecting agents. Most of these geminis protected plasmid DNA remarkably against DNase I in serum, although the degree of stability was found to vary with their structural features. Conclusions/Significance: -OH groups present on the cationic headgroups in combination with oxyethylene linkers on cholesterol based geminis, gave an optimized combination of new genera of gemini lipids possessing high transfection efficiency even in presence of very high percentage of serum. This property makes them preferential transfection reagents for possible in vivo studies.
Resumo:
The ligand glyoxal bis(4-methyl-4-phenyl-3-thiosemicarbazone) (GTSCH2) is shown to be a selective fluorescence turn-on sensor for zinc ions (Zn2+). This sensor is easy to synthesize, exhibits excellent sensitivity and selectivity towards Zn2+ over other physiologically relevant cations, and has sub-nanomolar binding affinity. It displays maximum fluorescence response to Zn2+ when the metal/ligand ratio is 1:1 and displays stable fluorescence over a broad pH range. The potential of GTSCH2 to image Zn2+ inside the cell was demonstrated in MCF-7 cells (human breast cancer cell line) by using flow cytometry and confocal fluorescence microscopy. Cell viability studies reveal that the probe is biocompatible and suitable for cellular applications.
Resumo:
The p53 protein mediated anti-tumor strategy is limited due to the lack of suitable delivery agent with insignificant immunogenic response, serum compatibility, and early and easy detection of the transfected cell population. To overcome these problems, we generated a p53-EGFP-C3 fusion construct which expressed easily detectable green fluorescence protein (GFP) and allowed an estimation of p53 mediated anti-tumor activity. A mixture of cationic cholesterol gemini (Choi-5L) with natural lipid, DOPE (molar ratio 1:4), acronymed as Chol-5LD, formed a nano-liposome as characterized by various physical methods. The prepared clone was evaluated for the expression of GFP and functional p53 in HeLa and two additional cell lines with varied p53 status namely, H1299 (p53(-/-)) and HEK293T (p53(+/+)). Transfected cells were screened using RT-PCR, Western blotting, FACS analysis, MTT, Trypan blue assay and visualized under a fluorescence microscope. The p53-EGFP-C3 fusion protein induced apoptosis in cancer cells as evident from DNA fragmentation, cell cycle analysis, Annexin-V staining and PARP cleavage assays. The transfection and apoptosis induction efficiency of Chol-5LD was significantly higher than commercial reagents Lipofectamine2000 and Effectene irrespective of the cell lines examined. Further it significantly decreases the xenograft tumor volume in nude mice tumors via apoptosis as observed in H&E staining. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The alpha v beta 3 and alpha v beta 5 integrins, transmembrane glycoprotein receptors, are over-expressed in numerous tumors and in endothelial cells that constitute tumor blood vessels. As this protein selectively binds to the Arg-Gly-Asp (RGD) sequence containing peptides, it is an attractive way to target tumors. Herein we have developed novel formulations for integrin mediated selective gene delivery. These formulations are composed of a novel palmitoylated tetrameric RGD containing scaffold (named RAFT-RGD), cationic gemini cholesterol (GL5) and a natural helper lipid 1,2-dioleoyl-L-alpha-glycero-3-phosphatidylethanolamine (DOPE). We have optimized a co-liposomal formulation to introduce the multivalent RGD-containing macromolecule in GL5: DOPE (GL5D) mixture to produce GL5D-RGD. We have unambiguously shown the selectivity of these formulations towards cancer cells that over express alpha v beta 3 and alpha v beta 5 integrins. Two reporter plasmids, pEGFP-C3 and PGL-3, were employed for the transfection experiments and it was shown that GL5D-RGD Liposomes increased exclusively the transfection in alpha v beta 3 and alpha v beta 5 overexpressing HeLa cells.