948 resultados para Interleukin-2.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

An intracellular protein termed CD2 binding protein 2 (CD2BP2), which binds to a site containing two PPPGHR segments within the cytoplasmic region of CD2, was identified. Mutagenesis and NMR analysis demonstrated that the CD2 binding region of CD2BP2 includes a 17-aa motif (GPY[orF]xxxxM[orV]xxWxxx GYF), also found in several yeast and Caenorhabditis elegans proteins of unknown function. In Jurkat T cells, over-expression of the isolated CD2BP2 domain binding to CD2 enhances the production of interleukin 2 on crosslinking of CD2 but not the T cell receptor. Hence, a proline-binding module distinct from SH3 and WW domains regulates protein–protein interactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

When T cells become infected by the parasite Theileria parva, they acquire a transformed phenotype and no longer require antigen-specific stimulation or exogenous growth factors. This is accompanied by constitutive interleukin 2 (IL-2) and IL-2 receptor expression. Transformation can be reversed entirely by elimination of the parasites using the specific drug BW720c. Extracellular signal-regulated kinase and jun NH2-terminal kinase (JNK) are members of the mitogen-activated protein kinase family, which play a central role in the regulation of cellular differentiation and proliferation and also participate in the regulation of IL-2 and IL-2 receptor gene expression. T. parva was found to induce an unorthodox pattern of mitogen-activated protein kinase expression in infected T cells. JNK-1 and JNK-2 are constitutively active in a parasite-dependent manner, but have altered properties. In contrast, extracellular signal-regulated kinase-2 is not activated even though its activation pathway is functionally intact. Different components of the T cell receptor (TCR)-dependent signal transduction pathways also were examined. The TCRζ or CD3ɛ chains were found not to be phosphorylated and T. parva-transformed T cells were resistant to inhibitors that block the early steps of T cell activation. Compounds that inhibit the progression of T cells to proliferation, however, were inhibitory. Our data provide the first example, to our knowledge, for parasite-mediated JNK activation, and our findings strongly suggest that T. parva not only lifts the requirement for antigenic stimulation but also entirely bypasses early TCR-dependent signal transduction pathways to induce continuous proliferation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Infection of cattle with the protozoan Theileria parva results in uncontrolled T lymphocyte proliferation resulting in lesions resembling multicentric lymphoma. Parasitized cells exhibit autocrine growth characterized by persistent translocation of the transcriptional regulatory factor nuclear factor κB (NFκB) to the nucleus and consequent enhanced expression of interleukin 2 and the interleukin 2 receptor. How T. parva induces persistent NFκB activation, required for T cell activation and proliferation, is unknown. We hypothesized that the parasite induces degradation of the IκB molecules which normally sequester NFκB in the cytoplasm and that continuous degradation requires viable parasites. Using T. parva-infected T cells, we showed that the parasite mediates continuous phosphorylation and proteolysis of IκBα. However, IκBα reaccumulated to high levels in parasitized cells, which indicated that T. parva did not alter the normal NFκB-mediated positive feedback loop which restores cytoplasmic IκBα. In contrast, T. parva mediated continuous degradation of IκBβ resulting in persistently low cytoplasmic IκBβ levels. Normal IκBβ levels were only restored following T. parva killing, indicating that viable parasites are required for IκBβ degradation. Treatment of T. parva-infected cells with pyrrolidine dithiocarbamate, a metal chelator, blocked both IκB degradation and consequent enhanced expression of NFκB dependent genes. However treatment using the antioxidant N-acetylcysteine had no effect on either IκB levels or NFκB activation, indicating that the parasite subverts the normal IκB regulatory pathway downstream of the requirement for reactive oxygen intermediates. Identification of the critical points regulated by T. parva may provide new approaches for disease control as well as increase our understanding of normal T cell function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Immunological functions were analyzed in mice lacking granulocyte/macrophage colony-stimulating factor (GM-CSF). The response of splenic T cells to allo-antigens, anti-mouse CD3 mAb, interleukin 2 (IL-2), or concanavalin A was comparable in GM-CSF +/+ and GM-CSF −/− mice. To investigate the responses of CD8+ and CD4+ T cells against exogenous antigens, mice were immunized with ovalbumin peptide or with keyhole limpet hemocyanin (KLH). Cytotoxic CD8+ T cells with specificity for ovalbumin peptide could not be induced in GM-CSF −/− mice. After immunization with KLH, there was a delay in IgG generation, particularly IgG2a, in GM-CSF −/− mice. Purified CD4+ T cells from GM-CSF −/− mice immunized with KLH showed impaired proliferative responses and produced low amounts of interferon-γ (IFN-γ) and IL-4 when KLH-pulsed B cells or spleen cells were used as antigen presenting cells (APC). When enriched dendritic cells (DC) were used as APC, CD4+ T cells from GM-CSF −/− mice proliferated as well as those from GM-CSF +/+ mice and produced high amounts of IFN-γ and IL-4. To analyze the rescue effect of DC on CD4+ T cells, supernatants from (i) CD4+ T cells cultured with KLH-pulsed DC or (ii) DC cultured with recombinant GM-CSF were transferred to cultures of CD4+ T cells and KLH-pulsed spleen cells from GM-CSF −/− mice. Supernatants from both DC sources contained a factor or factors that restored proliferative responses and IFN-γ production of CD4+ T cells from GM-CSF −/− mice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Gfi-1 protooncogene encodes a nuclear zinc-finger protein that carries a novel repressor domain, SNAG, and functions as a position- and orientation-independent active transcriptional repressor. The Gfi-1 repressor allows interleukin 2 (IL-2)-dependent T cells to escape G1 arrest induced by IL-2 withdrawal in culture and collaborates with c-myc and pim-1 for the induction of retrovirus-induced lymphomas in animals. Here we show that overexpression of Gfi-1 also inhibits cell death induced by cultivation of IL-2-dependent T-cell lines in IL-2-deficient media. Similarly, induction of Gfi-1 in primary thymocytes from mice carrying a metal-inducible Gfi-1 transgene inhibits cell death induced by cultivation in vitro. The protein and mRNA levels of the proapoptotic regulator Bax are down-regulated by Gfi-1 in both immortalized T-cell lines and primary transgenic thymocytes. The repression is direct and depends on several Gfi-1-binding sites in the p53-inducible Bax promoter. In addition to Bax, Gfi-1 also represses Bak, another apoptosis-promoting member of the Bcl-2 gene family. Therefore, Gfi-1 may inhibit apoptosis by means of its repression of multiple proapoptotic regulators. The antiapoptotic properties of Gfi-1 provide a potential explanation for its strong collaboration with c-myc during oncogenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stimulation of naive T cells by antigen-presenting cells (APC) is thought to involve two qualitatively different signals: signal one results from T-cell receptor (TCR) recognition of antigenic peptides bound to major histocompatibility complex (MHC) molecules, whereas signal two reflects contact with one or more costimulatory molecules. The requirements for stimulating naive T cells were studied with MHC class I-restricted CD8+ T cells from a T-cell receptor transgenic line, with defined peptides as antigen and transfected Drosophila cells as APC. Three main findings are reported. First, stimulation of naive T cells via signal one alone (MHC plus peptide) was essentially nonimmunogenic; thus T cells cultured with peptides presented by MHC class I-transfected Drosophila APC lacking costimulatory molecules showed little or no change in their surface phenotype. Second, cotransfection of two costimulatory molecules, B7-1 and intercellular adhesion molecule 1 (ICAM-1), converted class I+ Drosophila cells to potent APC capable of inducing strong T-proliferative responses and cytokine (interleukin 2) production. Third, B7-1 and ICAM-1 acted synergistically, indicating that signal two is complex; synergy between B7-1 and ICAM-1 varied from moderate to extreme and was influenced by both the dose and affinity of the peptide used and the parameter of T-cell activation studied. Transfected Drosophila cells are thus a useful tool for examining the minimal APC requirements for naive T cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

While effector molecules produced by activated macrophages (including nitric oxide, tumor necrosis factor α, interleukin 1, etc.) help to eliminate pathogens, high levels of these molecules can be deleterious to the host itself. Despite their importance, the mechanisms modulating macrophage effector functions are poorly understood. This work introduces two key negative regulators that control the levels and duration of macrophage cytokine production. Vacuolar-type H+-ATPase (V-ATPase) and calcineurin (Cn) constitutively act in normal macrophages to suppress expression of inflammatory cytokines in the absence of specific activation and to inhibit macrophage cytokine responses induced by bacterial lipopolysaccharide (V-ATPase), interferon γ (V-ATPase and Cn), and calcium (Ca2+) flux (Cn). Cn and V-ATPase modulate effector gene expression at the mRNA level by inhibiting transcription factor NF-κB. This negative regulation by Cn is opposite to its crucial positive role in T cells, where it activates NFAT transcription factor(s) leading to expression of interleukin 2, tumor necrosis factor α, and other cytokine genes. The negative effects of V-ATPase and Cn on NF-κB-dependent gene expression are not limited to the macrophage lineage, as similar effects have been seen with a murine fibroblast cell line and with primary astrocytes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We studied the effect of N-cadherin, and its free or membrane-anchored cytoplasmic domain, on the level and localization of β-catenin and on its ability to induce lymphocyte enhancer-binding factor 1 (LEF-1)-responsive transactivation. These cadherin derivatives formed complexes with β-catenin and protected it from degradation. N-cadherin directed β-catenin into adherens junctions, and the chimeric protein induced diffuse distribution of β-catenin along the membrane whereas the cytoplasmic domain of N-cadherin colocalized with β-catenin in the nucleus. Cotransfection of β-catenin and LEF-1 into Chinese hamster ovary cells induced transactivation of a LEF-1 reporter, which was blocked by the N-cadherin-derived molecules. Expression of N-cadherin and an interleukin 2 receptor/cadherin chimera in SW480 cells relocated β-catenin from the nucleus to the plasma membrane and reduced transactivation. The cytoplasmic tails of N- or E-cadherin colocalized with β-catenin in the nucleus, and suppressed the constitutive LEF-1-mediated transactivation, by blocking β-catenin–LEF-1 interaction. Moreover, the 72 C-terminal amino acids of N-cadherin stabilized β-catenin and reduced its transactivation potential. These results indicate that β-catenin binding to the cadherin cytoplasmic tail either in the membrane, or in the nucleus, can inhibit β-catenin degradation and efficiently block its transactivation capacity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has been shown in several animal models that HIV infection of accessory cells (ACs) plays an important role in development of AIDS. Here, we report that ACs treated with HIV-1 Tat protein (Tat-ACs) have a decreased ability to organize cellular aggregates as compared with untreated ACs, resulting in incomplete activation of T cells in responses to anti-CD3 mAb or staphylococcal enterotoxin B stimulation. The T cells failed to up-regulate adhesion molecules CD11a and CD2 on the cell surface and had reduced proliferative responses, as determined by [3H]thymidine incorporation, but they obtained lymphoblast-like morphology and expressed early activation antigens on the cell surface such as Fas and CD69 and interleukin 2 receptor, at comparable levels as those T cells undergoing a maximal proliferation. These results suggest that the Tat-AC-induced defect occurs in the late, but not in the early, phases of T cell activation. Normal expression of cell surface Fas antigen accompanied by defects in late activation thus may result in the susceptibility of these T cells to apoptosis. Our studies suggest that dysfunction, hyperactivation, and susceptibility to apoptosis, as observed with T cells isolated from HIV-infected individuals, may be, at least in part, a consequence of abnormal functions of ACs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Accurately identifying accessible sites in RNA is a critical prerequisite for optimising the cleavage efficiency of hammerhead ribozymes and other small nucleozymes. Here we describe a simple RNase H-based procedure to rapidly identify hammerhead ribozyme-accessible sites in gene length RNAs. Twelve semi-randomised RNA–DNA–RNA chimeric oligonucleotide probes, known as ‘gapmers’, were used to direct RNase H cleavage of transcripts with the specificity expected for hammerhead ribozymes, i.e. after NUH sites (where H is A, C or U). Cleavage sites were identified simply by the mobility of RNase H cleavage products relative to RNA markers in denaturing polyacrylamide gels. Sites were identified in transcripts encoding human interleukin-2 and platelet-derived growth factor. Thirteen minimised hammerhead ribozymes, miniribozymes (Mrz), were synthesised and in vitro cleavage efficiency (37°C, pH 7.6 and 1 mM MgCl2) at each site was analysed. Of the 13 Mrz, five were highly effective, demonstrating good initial rate constants and extents of cleavage. The speed and accuracy of this method commends its use in screening for hammerhead-accessible sites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vaccination with cytokine-producing tumor cells generates potent immune responses against tumors outside the central nervous system (CNS). The CNS, however, is a barrier to allograft and xenograft rejection, and established tumors within the CNS have failed to respond to other forms of systemic immunotherapy. To determine what barriers the "immunologically privileged" CNS would pose to cytokine-assisted tumor vaccines and what cytokines would be most efficacious against tumors within the CNS, we irradiated B16 murine melanoma cells producing murine interleukin 2 (IL-2), IL-3, IL-4, IL-6, gamma-interferon, or granulocyte-macrophage colony stimulating factor (GM-CSF) and used these cells as subcutaneous vaccines against tumors within the brain. Under conditions where untransfected B16 cells had no effect, cells producing IL-3, IL-6, or GM-CSF increased the survival of mice challenged with viable B16 cells in the brain. Vaccination with B16 cells producing IL-4 or gamma-interferon had no effect, and vaccination with B16 cells producing IL-2 decreased survival time. GM-CSF-producing vaccines were also able to increase survival in mice with pre-established tumors. The response elicited by GM-CSF-producing vaccines was found to be specific to tumor type and to be abrogated by depletion of CD8+ cells. Unlike the immunity generated against subcutaneous tumors by GM-CSF, however, the effector responses generated against tumors in the CNS were not dependent on CD4+ cells. These data suggest that cytokine-producing tumor cells are very potent stimulators of immunity against tumors within the CNS, but effector responses in the CNS may be different from those obtained against subcutaneous tumors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protein tyrosine phosphorylation and dephosphorylation are key regulatory events in T-cell receptor (TCR) signaling. We investigated the role of the tyrosine phosphatase SHPTP1 in TCR signaling by analysis of TCR signal transduction in motheaten (me/me) mice, which lack SHPTP1 expression. As revealed by flow cytometric analysis, thymocyte development was normal in me/me mice. However, me/me thymocytes hyperproliferated (3-to 5-fold) in response to TCR stimulation, whereas their response to interleukin 2 stimulation was unchanged compared with normal thymocytes. TCR-induced hyperproliferation of me/me thymocytes was reproduced in purified single-positive thymocytes. Moreover, me/me thymocytes produced increased amounts of interleukin 2 production upon TCR stimulation. Biochemical analysis revealed that, in response to TCR or TCR/CD4 stimulation, thymocytes lacking SHPTP1 showed increased tyrosyl phosphorylation of several cellular substrates, which correlated with increased activation of the src-family kinases Lck and Fyn. Taken together, our data suggest that SHPTP1 is an important negative regulator of TCR signaling, acting at least in part to inactivate Lck and Fyn.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The protein known as macrophage migration inhibitory factor (MIF) was one of the first cytokines to be discovered and was described 30 years ago to be a T-cell-derived factor that inhibited the random migration of macrophages in vitro. A much broader role for MIF has emerged recently as a result of studies that have demonstrated it to be released from the anterior pituitary gland in vivo. MIF also is the first protein that has been identified to be secreted from monocytes/macrophages upon glucocorticoid stimulation. Once released, MIF acts to "override" or counter-regulate the suppressive effects of glucocorticoids on macrophage cytokine production. We report herein that MIF plays an important regulatory role in the activation of T cells induced by mitogenic or antigenic stimuli. Activated T cells produce MIF and neutralizing anti-MIF antibodies inhibit T-cell proliferation and interleukin 2 production in vitro, and suppress antigen-driven T-cell activation and antibody production in vivo. T cells also release MIF in response to glucocorticoid stimulation and MIF acts to override glucocorticoid inhibition of T-cell proliferation and interleukin 2 and interferon gamma production. These studies indicate that MIF acts in concert with glucocorticoids to control T-cell activation and assign a previously unsuspected but critical role for MIF in antigen-specific immune responses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oral administration of autoantigens can prevent and partially suppress autoimmune diseases in a number of experimental models, Depending on the dose of antigen fed, this approach appears to involve distinct yet reversible and short-lasting mechanisms (anergy/deletion and suppression) and usually requires repeated feeding of large (suppression) to massive (anergy/deletion) amounts of autoantigens to be effective. Most importantly, this approach is relatively less effective in animals already systemically sensitized to the fed antigen, such as in animals already harboring autoreactive T cells and, thus, presumably also in humans suffering from an autoimmune disorder. We have previously shown that feeding a single dose of minute amounts of antigens conjugated to cholera toxin B subunit (CTB) can effectively suppress delayed-type hypersensitivity reactions in systemically immune animals. We now report that feeding small amounts of myelin basic protein (MBP) conjugated to CTB either before or after disease induction protected rats from experimental autoimmune encephalomyelitis. Such treatment was as effective in suppressing interleukin 2 production and proliferative responses of lymph node cells to MBP as treatment involving repeated feeding with much larger (50- to 100-fold) doses of free MBP. Different from the latter treatment, which led to decreased production of interferon-gamma in lymph nodes, low-dose oral CTB-MBP treatment was associated with increased interferon-gamma production. Most importantly, low-dose oral CTB-MBP treatment greatly reduced the level of leukocyte infiltration into spinal cord tissue compared with treatment with repeated feeding of large doses of MBP. These results suggest that the protection from experimental autoimmune encephalomyelitis achieved by feeding CTB-conjugated myelin autoantigen involves immunomodulating mechanisms that are distinct from those implicated by conventional protocols of oral tolerance induction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One distinctive effect on T-cell development was analyzed by selectively increasing serum prolactin (PRL) concentration in thymus-grafted congenitally athymic nude mice and by neutralizing PRL in suspension cultures of thymus from 1-day-old neonatal mice. Flow cytometric analysis of single-positive CD4+ and CD8+ cells derived from inguinal lymph nodes revealed a CD4/CD8 cell ratio of 2.2 +/- 0.18 (mean +/- SEM) in thymus-grafted nude mice that is similar to the ratio for immune-competent BALB/c mice (2.0 +/- 0.06). Addition of the pituitary to thymus-grafted nude mice significantly elevated serum PRL (P < 0.005) and increased the CD4/CD8 cell ratio (2.8 +/- 0.12; P < 0.005), demonstrating preferential stimulation of CD4+ cell development. T cells in nude mice receiving sham (submandibular salivary gland) or pituitary grafts alone were below detectable levels. Suspension cultures of neonatal thymus treated with anti-mouse PRL antiserum resulted in 20% and 30% decreases in double-positive CD4+8+ thymocytes and thymocyte viability, respectively. A 10-fold increase in double-negative CD4-8- thymocytes expressing the interleukin 2 receptor alpha chain, CD25, was also observed concurrently. Our findings illustrate an important way in which PRL may participate in two interrelated mechanisms: the regulation of peripheral single-positive cells and the maintenance of thymocyte viability during the double-positive stage of intrathymic differentiation.