952 resultados para Interlaminar shear
Resumo:
IN the last two decades, the instantaneous structure of a turbulent boundary layer has been examined by many in an effort to understand the dynamics of the flow. Distinct and well-defined flow patterns that seem to have great relevance to the turbulence production mechanism have been observed in the wall region.1'2 The flow near the wall is intermittent with periodic eruptions of the fluid, a phenomenon generally termed "bursting process." Earlier investigations in this field were limited to liquid flows at low speeds and the entire flowpattern was observed using flow visualization techniques.Study was later extended to boundary-layer flows in windtunnels at higher speeds and Reynolds numbers using hot-wiresignals for the analysis of the bursting phenomenon.
Resumo:
The near-tip deformation field in a high-constraint three-point bend specimen of pure aluminium single crystal is studied using in situ electron back-scattered diffraction and optical metallography. The orientation considered has the notch lying on the (0 1 0) plane and the notch front along direction. Results clearly show the occurrence of a kink shear sector boundary at 90° to the notch line on the specimen free surface as predicted by the analytical model of Rice [J.R. Rice, Mech. Mater. 6 (1987) 317].
Resumo:
The crush bands that form during plastic deformation of closed-cell metal foams are often inclined at 11-20 degrees to the loading axis, allowing for shear displacement of one part of the foam with respect to the other. Such displacement is prevented by the presence of a lateral constraint. This was analysed in this study, which shows that resistance against shear by the constraint leads to the strain-hardening effect in the foam that has been reported in a recent experimental study. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The shear difference method which is commonly used for the separation of normal stresses using photoelastic techniques depends on the step-by-step integration of one of the differential equations of equilibrium. It is assumed that the isoclinic and the isochromatic parameters measured by the conventional methods pertain to the state of stress at the midpoint of the light path. In practice, a slice thin enough for the above assumption to be true and at the same time thick enough to give differences in the shear-stress values over the thickness is necessary. The paper discusses the errors introduced in the isoclinic and isochromatic values by the conventional methods neglecting the variation of stresses along the light path. It is shown that while the error introduced in the measurement of the isochromatic parameter may not be serious, the error caused in the isoclinic measurement may lead to serious errors. Since the shear-difference method involves step-by-step integration the error introduced will be of a cumulative nature.
Resumo:
The intermittently rivet fastened Rectangular Hollow Flange Channel Beam (RHFCB) is a new cold-formed hollow section proposed as an alternative to welded hollow flange channel beams. It is a monosymmetric channel section made by intermittently rivet fastening two torsionally rigid rectangular hollow flanges to a web plate. This process enables the end users to choose an effective combination of different web and flange plate sizes to achieve optimum design capacities. Recent research studies focused mainly on the shear behaviour of the most commonly used lipped channel beam and welded hollow flange beam sections. However, the shear behaviour of rivet fastened RHFCB has not been investigated. Therefore a detailed experimental study involving 24 shear tests was undertaken to investigate the shear behaviour and capacities of rivet fastened RHFCBs. Simply supported test specimens of RHFCB with aspect ratios of 1.0 and 1.5 were loaded at mid-span until failure. Comparison of experimental shear capacities with corresponding predictions from the current Australian cold-formed steel design rules showed that the current design rules are very conservative for the shear design of rivet fastened RHFCBs. Significant improvements to web shear buckling occurred due to the presence of rectangular hollow flanges while considerable post-buckling strength was also observed. Such enhancements to the shear behaviour and capacity were achieved with a rivet spacing of 100 mm. Improved design rules were proposed for rivet fastened RHFCBs based on the current shear design equations in AISI S100 and the direct strength method. This paper presents the details of this experimental investigation and the results.
Resumo:
The intermittently rivet fastened Rectangular Hollow Flange Channel Beam (RHFCB) is a new cold-formed hollow section proposed as an alternative to welded hollow flange beams. Many experimental and numerical studies have been carried out in the past to investigate the shear behaviour of lipped channel beams. However, no research has been undertaken on the shear behaviour of rivet fastened RHFCBs. Therefore experimental and numerical studies were undertaken to investigate the shear behaviour and strength of rivet fastened RHFCBs. In this research finite element models of rivet fastened RHFCBs were developed to investigate their nonlinear shear behaviour including their buckling characteristics and ultimate shear strength. This paper presents the details of the finite element models of rivet fastened RHFCBs and the results. Both finite element analysis and experimental results showed that the current design rules are very conservative for the shear design of rivet fastened RHFCBs. Appropriate improvements have been proposed for the design rules of shear strength of rivet fastened RHFCBs within the Direct Strength Method format.
Resumo:
The rivet-fastened rectangular hollow flange channel beam (RHFCB) is a new cold-formed hollow section proposed as an alternative to welded hollow flange steel beams. No research has been undertaken on the shear behaviour and strength of rivet fastened RHFCBs with web openings. Hence a detailed experimental study involving 30 shear tests was undertaken to investigate the shear behaviour and strength of rivet fastened RHFCBs with web openings. Experimental results showed that the current design rules are inadequate for the shear design of Rivet fastened RHFCBs with web openings. Improved design equations have been proposed for the shear strength of rivet fastened RHFCBs with web openings.
Resumo:
The nanoindentation hardness of individual shear bands in a Zr-based metallic glass was investigated in order to obtain a better understanding of how shear band plasticity is influenced by non-crystalline defects. The results clearly showed that the shear band hardness in both as-cast and structurally relaxed samples is much lower than the respective hardness of undeformed region. Interestingly, inter-band matrix also exhibited lower hardness than undeformed region. The results are discussed in terms of the influence of structural state and the prevailing mechanism of plastic deformation.
Resumo:
Microcrystalline γ-Y2Si2O7 was indented at room temperature and the deformation microstructure was investigated by transmission electron microscopy in the vicinity of the indent. The volume directly beneath the indent comprises nanometer-sized grains delimited by an amorphous phase while dislocations dominate in the periphery either as dense slip bands in the border of the indent or, further away, as individual dislocations. The amorphous layers and the slip bands are a few nanometers thick. They lie along well-defined crystallographic planes. The microstructural organization is consistent with a stress-induced amorphization process whereby, under severe mechanical conditions, the crystal to amorphous transformation is mediated by slip bands containing a high density of dislocations. It is suggested that the damage tolerance of γ-Y2Si2O7, which is exceptional for a ceramic material, benefits from this transformation.
Resumo:
Mapping the shear wave velocity profile is an important part in seismic hazard and microzonation studies. The shear wave velocity of soil in the city of Bangalore was mapped using the Multichannel Analysis of Surface Wave (MASW) technique. An empirical relationship was found between the Standard Penetration Test (SPT) corrected N value ((N1)60cs) and measured shear wave velocity (Vs). The survey points were selected in such a way that the results represent the entire Bangalore region, covering an area of 220 km2. Fifty-eight 1-D and 20 2-D MASW surveys were performed and their velocity profiles determined. The average shear wave velocity of Bangalore soils was evaluated for depths of 5 m, 10 m, 15 m, 20 m, 25 m and 30 m. The sub-soil classification was made for seismic local site effect evaluation based on average shear wave velocity of 30-m depth (Vs30) of sites using the National Earthquake Hazards Reduction Program (NEHRP) and International Building Code (IBC) classification. Mapping clearly indicates that the depth of soil obtained from MASW closely matches with the soil layers identified in SPT bore holes. Estimation of local site effects for an earthquake requires knowledge of the dynamic properties of soil, which is usually expressed in terms of shear wave velocity. Hence, to make use of abundant SPT data available on many geotechnical projects in Bangalore, an attempt was made to develop a relationship between Vs (m/s) and (N1)60cs. The measured shear wave velocity at 38 locations close to SPT boreholes was used to generate the correlation between the corrected N values and shear wave velocity. A power fit model correlation was developed with a regression coefficient (R2) of 0.84. This relationship between shear wave velocity and corrected SPT N values correlates well with the Japan Road Association equations.
Resumo:
An analytical investigation of the transverse shear wave mode tuning with a resonator mass (packing mass) on a Lead Zirconium Titanate (PZT) crystal bonded together with a host plate and its equivalent electric circuit parameters are presented. The energy transfer into the structure for this type of wave modes are much higher in this new design. The novelty of the approach here is the tuning of a single wave mode in the thickness direction using a resonator mass. First, a one-dimensional constitutive model assuming the strain induced only in the thickness direction is considered. As the input voltage is applied to the PZT crystal in the thickness direction, the transverse normal stress distribution induced into the plate is assumed to have parabolic distribution, which is presumed as a function of the geometries of the PZT crystal, packing mass, substrate and the wave penetration depth of the generated wave. For the PZT crystal, the harmonic wave guide solution is assumed for the mechanical displacement and electric fields, while for the packing mass, the former is solved using the boundary conditions. The electromechanical characteristics in terms of the stress transfer, mechanical impedance, electrical displacement, velocity and electric field are analyzed. The analytical solutions for the aforementioned entities are presented on the basis of varying the thickness of the PZT crystal and the packing mass. The results show that for a 25% increase in the thickness of the PZT crystal, there is ~38% decrease in the first resonant frequency, while for the same change in the thickness of the packing mass, the decrease in the resonant frequency is observed as ~35%. Most importantly the tuning of the generated wave can be accomplished with the packing mass at lower frequencies easily. To the end, an equivalent electric circuit, for tuning the transverse shear wave mode is analyzed.
Resumo:
We examine the 2D plane-strain deformation of initially round, matrix-bonded, deformable single inclusions in isothermal simple shear using a recently introduced hyperelastoviscoplastic rheology. The broad parameter space spanned by the wide range of effective viscosities, yield stresses, relaxation times, and strain rates encountered in the ductile lithosphere is explored systematically for weak and strong inclusions, the effective viscosity of which varies with respect to the matrix. Most inclusion studies to date focused on elastic or purely viscous rheologies. Comparing our results with linear-viscous inclusions in a linear-viscous matrix, we observe significantly different shape evolution of weak and strong inclusions over most of the relevant parameter space. The evolution of inclusion inclination relative to the shear plane is more strongly affected by elastic and plastic contributions to rheology in the case of strong inclusions. In addition, we found that strong inclusions deform in the transient viscoelastic stress regime at high Weissenberg numbers (≥0.01) up to bulk shear strains larger than 3. Studies using the shapes of deformed objects for finite-strain analysis or viscosity-ratio estimation should establish carefully which rheology and loading conditions reflect material and deformation properties. We suggest that relatively strong, deformable clasts in shear zones retain stored energy up to fairly high shear strains. Hence, purely viscous models of clast deformation may overlook an important contribution to the energy budget, which may drive dissipation processes within and around natural inclusions.
Resumo:
The objective is to present the formulation of numerically integrated modified virtual crack closure integral technique for concentrically and eccentrically stiffened panels for computation of strain-energy release rate and stress intensity factor based on linear elastic fracture mechanics principles. Fracture analysis of cracked stiffened panels under combined tensile, bending, and shear loads has been conducted by employing the stiffened plate/shell finite element model, MQL9S2. This model can be used to analyze plates with arbitrarily located concentric/eccentric stiffeners, without increasing the total number of degrees of freedom, of the plate element. Parametric studies on fracture analysis of stiffened plates under combined tensile and moment loads have been conducted. Based on the results of parametric,studies, polynomial curve fitting has been carried out to get best-fit equations corresponding to each of the stiffener positions. These equations can be used for computation of stress intensity factor for cracked stiffened plates subjected to tensile and moment loads for a given plate size, stiffener configuration, and stiffener position without conducting finite element analysis.
Resumo:
A low strain shear modulus plays a fundamental role in the estimation of site response parameters In this study an attempt has been made to develop the relationships between standard penetration test (SPT) N values with the low strain shear modulus (G(max)) For this purpose, field experiments SPT and multichannel analysis of surface wave data from 38 locations in Bangalore, India, have been used, which were also used for seismic microzonation project The in situ density of soil layer was evaluated using undisturbed soil samples from the boreholes Shear wave velocity (V-s) profiles with depth were obtained for the same locations or close to the boreholes The values for low strain shear modulus have been calculated using measured V-s and soil density About 215 pairs of SPT N and G(max) values are used for regression analysis The differences between fitted regression relations using measured and corrected values were analyzed It is found that an uncorrected value of N and modulus gives the best fit with a high regression coefficient when compared to corrected N and corrected modulus values This study shows better correlation between measured values of N and G(max) when compared to overburden stress corrected values of N and G(max)
Resumo:
The growth rates of the hydrodynamic modes in the homogeneous sheared state of a granular material are determined by solving the Boltzmann equation. The steady velocity distribution is considered to be the product of the Maxwell Boltzmann distribution and a Hermite polynomial expansion in the velocity components; this form is inserted into them Boltzmann equation and solved to obtain the coeificients of the terms in the expansion. The solution is obtained using an expansion in the parameter epsilon =(1 - e)(1/2), and terms correct to epsilon(4) are retained to obtain an approximate solution; the error due to the neglect of higher terms is estimated at about 5% for e = 0.7. A small perturbation is placed on the distribution function in the form of a Hermite polynomial expansion for the velocity variations and a Fourier expansion in the spatial coordinates: this is inserted into the Boltzmann equation and the growth rate of the Fourier modes is determined. It is found that in the hydrodynamic limit, the growth rates of the hydrodynamic modes in the flow direction have unusual characteristics. The growth rate of the momentum diffusion mode is positive, indicating that density variations are unstable in the limit k--> 0, and the growth rate increases proportional to kslash} k kslash}(2/3) in the limit k --> 0 (in contrast to the k(2) increase in elastic systems), where k is the wave vector in the flow direction. The real and imaginary parts of the growth rate corresponding to the propagating also increase proportional to kslash k kslash(2/3) (in contrast to the k(2) and k increase in elastic systems). The energy mode is damped due to inelastic collisions between particles. The scaling of the growth rates of the hydrodynamic modes with the wave vector I in the gradient direction is similar to that in elastic systems. (C) 2000 Elsevier Science B.V. All rights reserved.