953 resultados para Interdisciplinary Applications
Resumo:
The Grubbs` measurement model is frequently used to compare several measuring devices. It is common to assume that the random terms have a normal distribution. However, such assumption makes the inference vulnerable to outlying observations, whereas scale mixtures of normal distributions have been an interesting alternative to produce robust estimates, keeping the elegancy and simplicity of the maximum likelihood theory. The aim of this paper is to develop an EM-type algorithm for the parameter estimation, and to use the local influence method to assess the robustness aspects of these parameter estimates under some usual perturbation schemes, In order to identify outliers and to criticize the model building we use the local influence procedure in a Study to compare the precision of several thermocouples. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Birnbaum-Saunders models have largely been applied in material fatigue studies and reliability analyses to relate the total time until failure with some type of cumulative damage. In many problems related to the medical field, such as chronic cardiac diseases and different types of cancer, a cumulative damage caused by several risk factors might cause some degradation that leads to a fatigue process. In these cases, BS models can be suitable for describing the propagation lifetime. However, since the cumulative damage is assumed to be normally distributed in the BS distribution, the parameter estimates from this model can be sensitive to outlying observations. In order to attenuate this influence, we present in this paper BS models, in which a Student-t distribution is assumed to explain the cumulative damage. In particular, we show that the maximum likelihood estimates of the Student-t log-BS models attribute smaller weights to outlying observations, which produce robust parameter estimates. Also, some inferential results are presented. In addition, based on local influence and deviance component and martingale-type residuals, a diagnostics analysis is derived. Finally, a motivating example from the medical field is analyzed using log-BS regression models. Since the parameter estimates appear to be very sensitive to outlying and influential observations, the Student-t log-BS regression model should attenuate such influences. The model checking methodologies developed in this paper are used to compare the fitted models.
Resumo:
The main objective of this paper is to study a logarithm extension of the bimodal skew normal model introduced by Elal-Olivero et al. [1]. The model can then be seen as an alternative to the log-normal model typically used for fitting positive data. We study some basic properties such as the distribution function and moments, and discuss maximum likelihood for parameter estimation. We report results of an application to a real data set related to nickel concentration in soil samples. Model fitting comparison with several alternative models indicates that the model proposed presents the best fit and so it can be quite useful in real applications for chemical data on substance concentration. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
We present a Bayesian approach for modeling heterogeneous data and estimate multimodal densities using mixtures of Skew Student-t-Normal distributions [Gomez, H.W., Venegas, O., Bolfarine, H., 2007. Skew-symmetric distributions generated by the distribution function of the normal distribution. Environmetrics 18, 395-407]. A stochastic representation that is useful for implementing a MCMC-type algorithm and results about existence of posterior moments are obtained. Marginal likelihood approximations are obtained, in order to compare mixture models with different number of component densities. Data sets concerning the Gross Domestic Product per capita (Human Development Report) and body mass index (National Health and Nutrition Examination Survey), previously studied in the related literature, are analyzed. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we present a Bayesian approach for estimation in the skew-normal calibration model, as well as the conditional posterior distributions which are useful for implementing the Gibbs sampler. Data transformation is thus avoided by using the methodology proposed. Model fitting is implemented by proposing the asymmetric deviance information criterion, ADIC, a modification of the ordinary DIC. We also report an application of the model studied by using a real data set, related to the relationship between the resistance and the elasticity of a sample of concrete beams. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
We consider the issue of assessing influence of observations in the class of beta regression models, which is useful for modelling random variables that assume values in the standard unit interval and are affected by independent variables. We propose a Cook-like distance and also measures of local influence under different perturbation schemes. Applications using real data are presented. (c) 2008 Elsevier B.V.. All rights reserved.
Resumo:
The generalized Birnbaum-Saunders (GBS) distribution is a new class of positively skewed models with lighter and heavier tails than the traditional Birnbaum-Saunders (BS) distribution, which is largely applied to study lifetimes. However, the theoretical argument and the interesting properties of the GBS model have made its application possible beyond the lifetime analysis. The aim of this paper is to present the GBS distribution as a useful model for describing pollution data and deriving its positive and negative moments. Based on these moments, we develop estimation and goodness-of-fit methods. Also, some properties of the proposed estimators useful for developing asymptotic inference are presented. Finally, an application with real data from Environmental Sciences is given to illustrate the methodology developed. This example shows that the empirical fit of the GBS distribution to the data is very good. Thus, the GBS model is appropriate for describing air pollutant concentration data, which produces better results than the lognormal model when the administrative target is determined for abating air pollution. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
The immersed boundary method is a versatile tool for the investigation of flow-structure interaction. In a large number of applications, the immersed boundaries or structures are very stiff and strong tangential forces on these interfaces induce a well-known, severe time-step restriction for explicit discretizations. This excessive stability constraint can be removed with fully implicit or suitable semi-implicit schemes but at a seemingly prohibitive computational cost. While economical alternatives have been proposed recently for some special cases, there is a practical need for a computationally efficient approach that can be applied more broadly. In this context, we revisit a robust semi-implicit discretization introduced by Peskin in the late 1970s which has received renewed attention recently. This discretization, in which the spreading and interpolation operators are lagged. leads to a linear system of equations for the inter-face configuration at the future time, when the interfacial force is linear. However, this linear system is large and dense and thus it is challenging to streamline its solution. Moreover, while the same linear system or one of similar structure could potentially be used in Newton-type iterations, nonlinear and highly stiff immersed structures pose additional challenges to iterative methods. In this work, we address these problems and propose cost-effective computational strategies for solving Peskin`s lagged-operators type of discretization. We do this by first constructing a sufficiently accurate approximation to the system`s matrix and we obtain a rigorous estimate for this approximation. This matrix is expeditiously computed by using a combination of pre-calculated values and interpolation. The availability of a matrix allows for more efficient matrix-vector products and facilitates the design of effective iterative schemes. We propose efficient iterative approaches to deal with both linear and nonlinear interfacial forces and simple or complex immersed structures with tethered or untethered points. One of these iterative approaches employs a splitting in which we first solve a linear problem for the interfacial force and then we use a nonlinear iteration to find the interface configuration corresponding to this force. We demonstrate that the proposed approach is several orders of magnitude more efficient than the standard explicit method. In addition to considering the standard elliptical drop test case, we show both the robustness and efficacy of the proposed methodology with a 2D model of a heart valve. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The ever-increasing robustness and reliability of flow-simulation methods have consolidated CFD as a major tool in virtually all branches of fluid mechanics. Traditionally, those methods have played a crucial role in the analysis of flow physics. In more recent years, though, the subject has broadened considerably, with the development of optimization and inverse design applications. Since then, the search for efficient ways to evaluate flow-sensitivity gradients has received the attention of numerous researchers. In this scenario, the adjoint method has emerged as, quite possibly, the most powerful tool for the job, which heightens the need for a clear understanding of its conceptual basis. Yet, some of its underlying aspects are still subject to debate in the literature, despite all the research that has been carried out on the method. Such is the case with the adjoint boundary and internal conditions, in particular. The present work aims to shed more light on that topic, with emphasis on the need for an internal shock condition. By following the path of previous authors, the quasi-1D Euler problem is used as a vehicle to explore those concepts. The results clearly indicate that the behavior of the adjoint solution through a shock wave ultimately depends upon the nature of the objective functional.
Resumo:
In this paper we study the Lyapunov stability and Hopf bifurcation in a biological system which models the biological control of parasites of orange plantations. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
We investigate the possibility of interpreting the degeneracy of the genetic code, i.e., the feature that different codons (base triplets) of DNA are transcribed into the same amino acid, as the result of a symmetry breaking process, in the context of finite groups. In the first part of this paper, we give the complete list of all codon representations (64-dimensional irreducible representations) of simple finite groups and their satellites (central extensions and extensions by outer automorphisms). In the second part, we analyze the branching rules for the codon representations found in the first part by computational methods, using a software package for computational group theory. The final result is a complete classification of the possible schemes, based on finite simple groups, that reproduce the multiplet structure of the genetic code. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This article is dedicated to harmonic wavelet Galerkin methods for the solution of partial differential equations. Several variants of the method are proposed and analyzed, using the Burgers equation as a test model. The computational complexity can be reduced when the localization properties of the wavelets and restricted interactions between different scales are exploited. The resulting variants of the method have computational complexities ranging from O(N(3)) to O(N) (N being the space dimension) per time step. A pseudo-spectral wavelet scheme is also described and compared to the methods based on connection coefficients. The harmonic wavelet Galerkin scheme is applied to a nonlinear model for the propagation of precipitation fronts, with the front locations being exposed in the sizes of the localized wavelet coefficients. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The goal of this paper is to analyze the character of the first Hopf bifurcation (subcritical versus supercritical) that appears in a one-dimensional reaction-diffusion equation with nonlinear boundary conditions of logistic type with delay. We showed in the previous work [Arrieta et al., 2010] that if the delay is small, the unique non-negative equilibrium solution is asymptotically stable. We also showed that, as the delay increases and crosses certain critical value, this equilibrium becomes unstable and undergoes a Hopf bifurcation. This bifurcation is the first one of a cascade occurring as the delay goes to infinity. The structure of this cascade will depend on the parameters appearing in the equation. In this paper, we show that the first bifurcation that occurs is supercritical, that is, when the parameter is bigger than the delay bifurcation value, stable periodic orbits branch off from the constant equilibrium.
Resumo:
We present an efficient numerical methodology for the 31) computation of incompressible multi-phase flows described by conservative phase-field models We focus here on the case of density matched fluids with different viscosity (Model H) The numerical method employs adaptive mesh refinements (AMR) in concert with an efficient semi-implicit time discretization strategy and a linear, multi-level multigrid to relax high order stability constraints and to capture the flow`s disparate scales at optimal cost. Only five linear solvers are needed per time-step. Moreover, all the adaptive methodology is constructed from scratch to allow a systematic investigation of the key aspects of AMR in a conservative, phase-field setting. We validate the method and demonstrate its capabilities and efficacy with important examples of drop deformation, Kelvin-Helmholtz instability, and flow-induced drop coalescence (C) 2010 Elsevier Inc. All rights reserved
Resumo:
In this paper we introduce the Weibull power series (WPS) class of distributions which is obtained by compounding Weibull and power series distributions where the compounding procedure follows same way that was previously carried out by Adamidis and Loukas (1998) This new class of distributions has as a particular case the two-parameter exponential power series (EPS) class of distributions (Chahkandi and Gawk 2009) which contains several lifetime models such as exponential geometric (Adamidis and Loukas 1998) exponential Poisson (Kus 2007) and exponential logarithmic (Tahmasbi and Rezaei 2008) distributions The hazard function of our class can be increasing decreasing and upside down bathtub shaped among others while the hazard function of an EPS distribution is only decreasing We obtain several properties of the WPS distributions such as moments order statistics estimation by maximum likelihood and inference for a large sample Furthermore the EM algorithm is also used to determine the maximum likelihood estimates of the parameters and we discuss maximum entropy characterizations under suitable constraints Special distributions are studied in some detail Applications to two real data sets are given to show the flexibility and potentiality of the new class of distributions (C) 2010 Elsevier B V All rights reserved