990 resultados para Interactions modification
Resumo:
Aim: Electrospun nanofibers represent potent guidance substrates for nervous tissue repair. Development of nanofiber-based scaffolds for CNS repair requires, as a first step, an understanding of appropriate neural cell type-substrate interactions. Materials & methods: Astrocyte–nanofiber interactions (e.g., adhesion, proliferation, process extension and migration) were studied by comparing human neural progenitor-derived astrocytes (hNP-ACs) and a human astrocytoma cell line (U373) with aligned polycaprolactone (PCL) nanofibers or blended (25% type I collagen/75% PCL) nanofibers. Neuron–nanofiber interactions were assessed using a differentiated human neuroblastoma cell line (SH-SY5Y). Results & discussion: U373 cells and hNP-AC showed similar process alignment and length when associated with PCL or Type I collagen/PCL nanofibers. Cell adhesion and migration by hNP-AC were clearly improved by functionalization of nanofiber surfaces with type I collagen. Functionalized nanofibers had no such effect on U373 cells. Another clear difference between the U373 cells and hNP-AC interactions with the nanofiber substrate was proliferation; the cell line demonstrating strong proliferation, whereas the hNP-AC line showed no proliferation on either type of nanofiber. Long axonal growth (up to 600 µm in length) of SH-SY5Y neurons followed the orientation of both types of nanofibers even though adhesion of the processes to the fibers was poor. Conclusion: The use of cell lines is of only limited predictive value when studying cell–substrate interactions but both morphology and alignment of human astrocytes were affected profoundly by nanofibers. Nanofiber surface functionalization with collagen significantly improved hNP-AC adhesion and migration. Alternative forms of functionalization may be required for optimal axon–nanofiber interactions.
Resumo:
Detecting query reformulations within a session by a Web searcher is an important area of research for designing more helpful searching systems and targeting content to particular users. Methods explored by other researchers include both qualitative (i.e., the use of human judges to manually analyze query patterns on usually small samples) and nondeterministic algorithms, typically using large amounts of training data to predict query modification during sessions. In this article, we explore three alternative methods for detection of session boundaries. All three methods are computationally straightforward and therefore easily implemented for detection of session changes. We examine 2,465,145 interactions from 534,507 users of Dogpile.com on May 6, 2005. We compare session analysis using (a) Internet Protocol address and cookie; (b) Internet Protocol address, cookie, and a temporal limit on intrasession interactions; and (c) Internet Protocol address, cookie, and query reformulation patterns. Overall, our analysis shows that defining sessions by query reformulation along with Internet Protocol address and cookie provides the best measure, resulting in an 82% increase in the count of sessions. Regardless of the method used, the mean session length was fewer than three queries, and the mean session duration was less than 30 min. Searchers most often modified their query by changing query terms (nearly 23% of all query modifications) rather than adding or deleting terms. Implications are that for measuring searching traffic, unique sessions may be a better indicator than the common metric of unique visitors. This research also sheds light on the more complex aspects of Web searching involving query modifications and may lead to advances in searching tools.
Resumo:
This paper introduces our research on influencing the experience of people in urban public places through mobile mediated interactions. Information and communication technology (ICT) devices are sometimes used to create personal space while in public. ICT devices could also be utilised to digitally augment the urban space with non-privacy sensitive data enabling mobile mediated interactions in an anonymous way between collocated strangers. We present what motivates the research on digital augmentations and mobile mediated interactions between unknown urban dwellers, define the research problem that drives this study and why it is significant research in the field of pervasive social networking. The paper illustrates three design interventions enabling social pervasive content sharing and employing pervasive presence, awareness and anonymous social user interaction in urban public places. The paper concludes with an outlook and summarises the research effort.
Resumo:
In this paper we examine the usability of tablets for students in middle school in the context of mobile environmental education. Our study focuses on the expressive qualities of three input methods – text, audio and drawing – and the extent to which these methods support on-task behaviour. In our study 28 small groups of children were given iPads and asked to record ecological observations from around their schoolyard. The effectiveness of the devices and their core utility for expressive, on-task data capture is assessed.
Resumo:
Purpose – To investigate and identify the patterns of interaction between searchers and search engine during web searching. Design/methodology/approach – The authors examined 2,465,145 interactions from 534,507 users of Dogpile.com submitted on May 6, 2005, and compared query reformulation patterns. They investigated the type of query modifications and query modification transitions within sessions. Findings – The paper identifies three strong query reformulation transition patterns: between specialization and generalization; between video and audio, and between content change and system assistance. In addition, the findings show that web and images content were the most popular media collections. Originality/value – This research sheds light on the more complex aspects of web searching involving query modifications.
Resumo:
Polymer nanocomposites (NC) are fabricated by incorporating well dispersed nanoscale particles within a polymer matrix. This study focuses on elastomeric polyurethane (PU) based nanocomposites, containing organically modified silicates (OMS), as bioactive materials. Nanocomposites incorporating chlorhexidine diacetate as an organic modifier (OM) were demonstrated to be antibacterial with a dose dependence related to both the silicate loading and the loading of OM. When the non-antibacterial OM dodecylamine was used, both cell and platelet adhesion were decreased on the nanocomposite surface. These results suggest that OM is released from the polymer and can impact on cell behaviour at the interface. Nanocomposites have potential use as bioactive materials in a range of biomedical applications.
Resumo:
Surface coating with an organic self-assembled monolayer (SAM) can enhance surface reactions or the absorption of specific gases and hence improve the response of a metal oxide (MOx) sensor toward particular target gases in the environment. In this study the effect of an adsorbed organic layer on the dynamic response of zinc oxide nanowire gas sensors was investigated. The effect of ZnO surface functionalisation by two different organic molecules, tris(hydroxymethyl)aminomethane (THMA) and dodecanethiol (DT), was studied. The response towards ammonia, nitrous oxide and nitrogen dioxide was investigated for three sensor configurations, namely pure ZnO nanowires, organic-coated ZnO nanowires and ZnO nanowires covered with a sparse layer of organic-coated ZnO nanoparticles. Exposure of the nanowire sensors to the oxidising gas NO2 produced a significant and reproducible response. ZnO and THMA-coated ZnO nanowire sensors both readily detected NO2 down to a concentration in the very low ppm range. Notably, the THMA-coated nanowires consistently displayed a small, enhanced response to NO2 compared to uncoated ZnO nanowire sensors. At the lower concentration levels tested, ZnO nanowire sensors that were coated with THMA-capped ZnO nanoparticles were found to exhibit the greatest enhanced response. ΔR/R was two times greater than that for the as-prepared ZnO nanowire sensors. It is proposed that the ΔR/R enhancement in this case originates from the changes induced in the depletion-layer width of the ZnO nanoparticles that bridge ZnO nanowires resulting from THMA ligand binding to the surface of the particle coating. The heightened response and selectivity to the NO2 target are positive results arising from the coating of these ZnO nanowire sensors with organic-SAM-functionalised ZnO nanoparticles.
Resumo:
The opening phrase of the title is from Charles Darwin’s notebooks (Schweber 1977). It is a double reminder, firstly that mainstream evolutionary theory is not just about describing nature but is particularly looking for mechanisms or ‘causes’, and secondly, that there will usually be several causes affecting any particular outcome. The second part of the title is our concern at the almost universal rejection of the idea that biological mechanisms are sufficient for macroevolutionary changes, thus rejecting a cornerstone of Darwinian evolutionary theory. Our primary aim here is to consider ways of making it easier to develop and to test hypotheses about evolution. Formalizing hypotheses can help generate tests. In an absolute sense, some of the discussion by scientists about evolution is little better than the lack of reasoning used by those advocating intelligent design. Our discussion here is in a Popperian framework where science is defined by that area of study where it is possible, in principle, to find evidence against hypotheses – they are in principle falsifiable. However, with time, the boundaries of science keep expanding. In the past, some aspects of evolution were outside the current boundaries of falsifiable science, but increasingly new techniques and ideas are expanding the boundaries of science and it is appropriate to re-examine some topics. It often appears that over the last few decades there has been an increasingly strong assumption to look first (and only) for a physical cause. This decision is virtually never formally discussed, just an assumption is made that some physical factor ‘drives’ evolution. It is necessary to examine our assumptions much more carefully. What is meant by physical factors ‘driving’ evolution, or what is an ‘explosive radiation’. Our discussion focuses on two of the six mass extinctions, the fifth being events in the Late Cretaceous, and the sixth starting at least 50,000 years ago (and is ongoing). Cretaceous/Tertiary boundary; the rise of birds and mammals. We have had a long-term interest (Cooper and Penny 1997) in designing tests to help evaluate whether the processes of microevolution are sufficient to explain macroevolution. The real challenge is to formulate hypotheses in a testable way. For example the numbers of lineages of birds and mammals that survive from the Cretaceous to the present is one test. Our first estimate was 22 for birds, and current work is tending to increase this value. This still does not consider lineages that survived into the Tertiary, and then went extinct later. Our initial suggestion was probably too narrow in that it lumped four models from Penny and Phillips (2004) into one model. This reduction is too simplistic in that we need to know about survival and ecological and morphological divergences during the Late Cretaceous, and whether Crown groups of avian or mammalian orders may have existed back into the Cretaceous. More recently (Penny and Phillips 2004) we have formalized hypotheses about dinosaurs and pterosaurs, with the prediction that interactions between mammals (and groundfeeding birds) and dinosaurs would be most likely to affect the smallest dinosaurs, and similarly interactions between birds and pterosaurs would particularly affect the smaller pterosaurs. There is now evidence for both classes of interactions, with the smallest dinosaurs and pterosaurs declining first, as predicted. Thus, testable models are now possible. Mass extinction number six: human impacts. On a broad scale, there is a good correlation between time of human arrival, and increased extinctions (Hurles et al. 2003; Martin 2005; Figure 1). However, it is necessary to distinguish different time scales (Penny 2005) and on a finer scale there are still large numbers of possibilities. In Hurles et al. (2003) we mentioned habitat modification (including the use of Geogenes III July 2006 31 fire), introduced plants and animals (including kiore) in addition to direct predation (the ‘overkill’ hypothesis). We need also to consider prey switching that occurs in early human societies, as evidenced by the results of Wragg (1995) on the middens of different ages on Henderson Island in the Pitcairn group. In addition, the presence of human-wary or humanadapted animals will affect the distribution in the subfossil record. A better understanding of human impacts world-wide, in conjunction with pre-scientific knowledge will make it easier to discuss the issues by removing ‘blame’. While continued spontaneous generation was accepted universally, there was the expectation that animals continued to reappear. New Zealand is one of the very best locations in the world to study many of these issues. Apart from the marine fossil record, some human impact events are extremely recent and the remains less disrupted by time.
Resumo:
A holistic study of the composition of the basalt groundwaters of the Atherton Tablelands region in Queensland, Australia was undertaken to elucidate possible mechanisms for the evolution of these very low salinity, silica- and bicarbonate-rich groundwaters. It is proposed that aluminosilicate mineral weathering is the major contributing process to the overall composition of the basalt groundwaters. The groundwaters approach equilibrium with respect to the primary minerals with increasing pH and are mostly in equilibrium with the major secondary minerals (kaolinite and smectite), and other secondary phases such as goethite, hematite, and gibbsite, which are common accessory minerals in the Atherton basalts. The mineralogy of the basalt rocks, which has been examined using X-ray diffraction and whole rock geochemistry methods, supports the proposed model for the hydrogeochemical evolution of these groundwaters: precipitation + CO 2 (atmospheric + soil) + pyroxene + feldspars + olivine yields H 4SiO 4, HCO 3 -, Mg 2+, Na +, Ca 2+ + kaolinite and smectite clays + amorphous or crystalline silica + accessory minerals (hematite, goethite, gibbsite, carbonates, zeolites, and pyrite). The variations in the mineralogical content of these basalts also provide insights into the controls on groundwater storage and movement in this aquifer system. The fresh and weathered vesicular basalts are considered to be important in terms of zones of groundwater occurrence, while the fractures in the massive basalt are important pathways for groundwater movement.
Resumo:
The immune system plays an important role in defending the body against tumours and other threats. Currently, mechanisms involved in immune system interactions with tumour cells are not fully understood. Here we develop a mathematical tool that can be used in aiding to address this shortfall in understanding. This paper de- scribes a hybrid cellular automata model of the interaction between a growing tumour and cells of the innate and specific immune system including the effects of chemokines that builds on previous models of tumour-immune system interactions. In particular, the model is focused on the response of immune cells to tumour cells and how the dynamics of the tumour cells change due to the immune system of the host. We present results and predictions of in silico experiments including simulations of Kaplan-Meier survival-like curves.
Resumo:
Visual adaptation regulates contrast sensitivity during dynamically changing light conditions (Crawford, 1947; Hecht, Haig & Chase, 1937). These adaptation dynamics are unknown under dim (mesopic) light levels when the rod (R) and long (L), medium (M) and short (S) wavelength cone photoreceptor classes contribute to vision via interactions in shared non-opponent Magnocellular (MC), chromatically opponent Parvocellular (PC) and Koniocellular (KC) visual pathways (Dacey, 2000). This study investigated the time-course of adaptation and post-receptoral pathways mediating receptor specific rod and cone interactions under mesopic illumination. A four-primary photostimulator (Pokorny, Smithson & Quinlan, 2004) was used to independently control the activity of the four photoreceptor classes and their post-receptoral visual athways in human observers. In the first experiment, the contrast sensitivity and time-course of visual adaptation under mesopic illumination were measured for receptoral (L, S, R) and post-receptoral (LMS, LMSR, L-M) stimuli. An incremental (Rapid-ON) sawtooth conditioning pulse biased detection to ON-cells within the visual pathways and sensitivity was assayed relative to pulse onset using a briefly presented incremental probe that did not alter adaptation. Cone.Cone interactions with luminance stimuli (L cone, LMS, LMSR) reduced sensitivity by 15% and the time course of recovery was 25± 5ms-1 (μ ± SEM). PC mediated (+L-M) chromatic stimuli sensitivity loss was less (8%) than for luminance and recovery was slower (μ = 2.95 ± 0.05 ms-1), with KC mediated (S cone) chromatic stimuli showing a high sensitivity loss (38%) and the slowest recovery time (1.6 ± 0.2 ms-1). Rod-Rod interactions increased sensitivity by 20% and the time course of recovery was 0.7 ± 0.2 ms-1 (μ ± SD). Compared to these interaction types, Rod-Cone interactions reduced sensitivity to a lesser degree (5%) and showed the fastest recovery (μ = 43 ± 7 ms-1). In the second experiment, rod contribution to the magnocellular, parvocellular and koniocellular post-receptoral pathways under mesopic illumination was determined as a function of incremental stimulus duration and waveform (rectangular; sawtooth) using a rod colour match procedure (Cao, Pokorny & Smith, 2005; Cao, Pokorny, Smith & Zele, 2008a). For a 30% rod increment, a cone match required a decrease in [L/(L+M)] and an increase in [L+M] and [S/(L+M)], giving a greenish-blue and brighter appearance for probe durations of 75 ms or longer. Probe durations less than 75 ms showed an increase in [L+M] and no change in chromaticity [L/(L+M) or S/(L+M)], uggesting mediation by the MC pathway only for short duration rod stimuli. s We advance previous studies by determining the time-course and nature of photoreceptor specific retinal interactions in the three post-receptoral pathways under mesopic illumination. In the first experiment, the time-course of adaptation for ON cell processing was determined, revealing opponent cell facilitation in chromatic PC and KC pathways. The Rod-Rod and Rod-Cone data identify previously unknown interaction types that act to maintain contrast sensitivity during dynamically changing light conditions and improve the speed of light adaptation under mesopic light levels. The second experiment determined the degree of rod contribution to the inferred post-eceptoral pathways as a function of the temporal properties of the rod signal. r The understanding of the mechanisms underlying interactions between photoreceptors under mesopic illumination has implications for the study of retinal disease. Visual function has been shown to be reduced in persons with age-related maculopathy (ARM) risk genotypes prior to clinical signs of the disease (Feigl, Cao, Morris & Zele, 2011) and disturbances in rod-mediated adaptation have been shown in early phases of ARM (Dimitrov, Guymer, Zele, Anderson & Vingrys, 2008; Feigl, Brown, Lovie-Kitchin & Swann, 2005). Also, the understanding of retinal networks controlling vision enables the development of international lighting standards to optimise visual performance nder dim light levels (e.g. work-place environments, transportation).
Resumo:
A detailed 3D lithological model framework was developed using GOCAD software to understand interactions between alluvial, volcanic and GAB aquifers and the spatial and temporal distribution of groundwater recharge to the alluvium of the Lockyer Valley. Groundwater chemistry, isotope data (H20-δ2H and δ18O , 87Sr/86Sr, 3H and 14C) and groundwater level time-series data from approximately 550 observation wells were integrated into the catchment-wide 3D model to assess the recharge processes involved. This approach enabled the identification of zones where recharge to the alluvium primarily occurs from stream water during episodic flood events. Importantly, the study also demonstrates that in some sections of the alluvium recharge is also from storm rainfall and seepage discharge from the underlying GAB aquifers. These other sources of recharge are indicated by (a) the absence of a response of groundwater levels to flooding in some areas, (b) old radiocarbon ages, and (c) distinct bedrock water chemistry and δ2H and δ18O signatures in alluvial groundwater at these locations. Integration of isotopes, water chemistry and time-series displays of groundwater levels before and after the 2010/2011 flood into the 3D model suggest that the spatial variations in the alluvial groundwater response are mostly controlled by valley morphology and lithological (i.e. permeability) variations within the alluvium. Examination of the groundwater level variations in the 3D model also enabled quantification of the volumetric change of groundwater stored in the unconfined alluvial aquifer prior to and post-flood events.
Resumo:
Objective: The aim of this paper is to propose a ‘Perceived barriers and lifestyle risk factor modification model’ that could be incorporated into existing frameworks for diabetes education to enhance lifestyle risk factor education in women. Setting: Diabetes education, community health. Primary argument: ‘Perceived barriers’ is a health promotion concept that has been found to be a significant predictor of health promotion behaviour. There is evidence that women face a range of perceived barriers that prevent them from engaging in healthy lifestyle activities. Despite this, current evidence based models of diabetes education do not explicitly incorporate the concept of perceived barriers. A model of risk factor reduction that incorporates ‘perceived barriers’ is proposed. Conclusion: Although further research is required, current approaches to risk factor reduction in type 2 diabetes could be enhanced by identification and goal setting to reduce an individual’s perceived barriers.