975 resultados para Intelligent Virtual Agents
Resumo:
In development of Synthetic Agents for Education, the doubt still resides about what would be a behavior that could be considered, in fact, plausible for this agent's type, which can be considered as effective on the transmission of the knowledge by the agent and the function of emotions this process. The purpose of this labor has an investigative nature in an attempt to discover what aspects are important for this behavior consistent and practical development of a chatterbot with the function of virtual tutor, within the context of learning algorithms. In this study, we explained the agents' basics, Intelligent Tutoring Systems, bots, chatterbots and how these systems need to provide credibility to report on their behavior. Models of emotions, personality and humor to computational agents are also covered, as well as previous studies by other researchers at the area. After that, the prototype is detailed, the research conducted, a summary of results achieved, the architectural model of the system, vision of computing and macro view of the features implemented.
Resumo:
This paper describes an urban traffic control system which aims at contributing to a more efficient traffic management system in the cities of Brazil. It uses fuzzy sets, case-based reasoning, and genetic algorithms to handle dynamic and unpredictable traffic scenarios, as well as uncertain, incomplete, and inconsistent information. The system is composed by one supervisor and several controller agents, which cooperate with each other to improve the system's results through Artificial Intelligence Techniques.
Resumo:
The present study introduces a multi-agent architecture designed for doing automation process of data integration and intelligent data analysis. Different from other approaches the multi-agent architecture was designed using a multi-agent based methodology. Tropos, an agent based methodology was used for design. Based on the proposed architecture, we describe a Web based application where the agents are responsible to analyse petroleum well drilling data to identify possible abnormalities occurrence. The intelligent data analysis methods used was the Neural Network.
Resumo:
Pós-graduação em Química - IQ
Resumo:
While the use of distributed intelligence has been incrementally spreading in the design of a great number of intelligent systems, the field of Artificial Intelligence in Real Time Strategy games has remained mostly a centralized environment. Despite turn-based games have attained AIs of world-class level, the fast paced nature of RTS games has proven to be a significant obstacle to the quality of its AIs. Chapter 1 introduces RTS games describing their characteristics, mechanics and elements. Chapter 2 introduces Multi-Agent Systems and the use of the Beliefs-Desires-Intentions abstraction, analysing the possibilities given by self-computing properties. In Chapter 3 the current state of AI development in RTS games is analyzed highlighting the struggles of the gaming industry to produce valuable. The focus on improving multiplayer experience has impacted gravely on the quality of the AIs thus leaving them with serious flaws that impair their ability to challenge and entertain players. Chapter 4 explores different aspects of AI development for RTS, evaluating the potential strengths and weaknesses of an agent-based approach and analysing which aspects can benefit the most against centralized AIs. Chapter 5 describes a generic agent-based framework for RTS games where every game entity becomes an agent, each of which having its own knowledge and set of goals. Different aspects of the game, like economy, exploration and warfare are also analysed, and some agent-based solutions are outlined. The possible exploitation of self-computing properties to efficiently organize the agents activity is then inspected. Chapter 6 presents the design and implementation of an AI for an existing Open Source game in beta development stage: 0 a.d., an historical RTS game on ancient warfare which features a modern graphical engine and evolved mechanics. The entities in the conceptual framework are implemented in a new agent-based platform seamlessly nested inside the existing game engine, called ABot, widely described in Chapters 7, 8 and 9. Chapter 10 and 11 include the design and realization of a new agent based language useful for defining behavioural modules for the agents in ABot, paving the way for a wider spectrum of contributors. Chapter 12 concludes the work analysing the outcome of tests meant to evaluate strategies, realism and pure performance, finally drawing conclusions and future works in Chapter 13.
Resumo:
AIMS: To determine the influence of strabismus on the ability to find a partner. METHODS: We interviewed Swiss dating agents retrieved from two Swiss online telephone directories using a validated questionnaire to determine whether strabismus has any impact on the ability to find a partner. During the interviews, subjects with internet access could view downloadable, digitally altered photographs of a strabismic man and women, as well as images of other computer-generated facial anomalies. RESULTS: Of the 40 dating agents, 92.5% judged that strabismic subjects have more difficulty finding a partner (p<0.001). Such difficulty was not associated with either gender or age but was perceived as being greater in exotropic than in esotropic persons (p<0.001). Among the seven facial disfigurements, strabismus was believed to have the third largest negative impact on finding a partner, after strong acne and a visible missing tooth. Dating agents also believed that potential partners perceive persons with strabismus as significantly less attractive (p<0.001), erotic (p<0.001), likeable (p<0.001), interesting (p<0.001), successful (p<0.001), intelligent (p = 0.001) and sporty (p = 0.01). CONCLUSIONS: Visible strabismus negatively influences the ability to find a partner. Because strabismus surgery in adults restores a normal functioning condition and reduces not only physical but also psychosocial difficulties, it cannot be considered a cosmetic procedure.
Resumo:
Tracking user’s visual attention is a fundamental aspect in novel human-computer interaction paradigms found in Virtual Reality. For example, multimodal interfaces or dialogue-based communications with virtual and real agents greatly benefit from the analysis of the user’s visual attention as a vital source for deictic references or turn-taking signals. Current approaches to determine visual attention rely primarily on monocular eye trackers. Hence they are restricted to the interpretation of two-dimensional fixations relative to a defined area of projection. The study presented in this article compares precision, accuracy and application performance of two binocular eye tracking devices. Two algorithms are compared which derive depth information as required for visual attention-based 3D interfaces. This information is further applied to an improved VR selection task in which a binocular eye tracker and an adaptive neural network algorithm is used during the disambiguation of partly occluded objects.
Resumo:
Second Life (SL) is an ideal platform for language learning. It is called a Multi-User Virtual Environment, where users can have varieties of learning experiences in life-like environments. Numerous attempts have been made to use SL as a platform for language teaching and the possibility of SL as a means to promote conversational interactions has been reported. However, the research so far has largely focused on simply using SL without further augmentations for communication between learners or between teachers and learners in a school-like environment. Conversely, not enough attention has been paid to its controllability which builds on the embedded functions in SL. This study, based on the latest theories of second language acquisition, especially on the Task Based Language Teaching and the Interaction Hypothesis, proposes to design and implement an automatized interactive task space (AITS) where robotic agents work as interlocutors of learners. This paper presents a design that incorporates the SLA theories into SL and the implementation method of the design to construct AITS, fulfilling the controllability of SL. It also presents the result of the evaluation experiment conducted on the constructed AITS.
Resumo:
The confluence of three-dimensional (3D) virtual worlds with social networks imposes on software agents, in addition to conversational functions, the same behaviours as those common to human-driven avatars. In this paper, we explore the possibilities of the use of metabots (metaverse robots) with motion capabilities in complex virtual 3D worlds and we put forward a learning model based on the techniques used in evolutionary computation for optimizing the fuzzy controllers which will subsequently be used by metabots for moving around a virtual environment.
Resumo:
Some of the recent proposals of web-based applications are oriented to provide advanced search services through virtual shops. Within this context, this paper proposes an advanced type of software application that simulates how a sales assistant dialogues with a consumer to dynamically configure a product according to particular needs. The paper presents the general knowl- edge model that uses artificial intelligence and knowledge-based techniques to simulate the configuration process. Finally, the paper illustrates the description with an example of an application in the field of photography equipment.
Resumo:
It is easy to get frustrated at spoken conversational agents (SCAs), perhaps because they seem to be callous. By and large, the quality of human-computer interaction is affected due to the inability of the SCAs to recognise and adapt to user emotional state. Now with the mass appeal of artificially-mediated communication, there has been an increasing need for SCAs to be socially and emotionally intelligent, that is, to infer and adapt to their human interlocutors’ emotions on the fly, in order to ascertain an affective, empathetic and naturalistic interaction. An enhanced quality of interaction would reduce users’ frustrations and consequently increase their satisfactions. These reasons have motivated the development of SCAs towards including socio-emotional elements, turning them into affective and socially-sensitive interfaces. One barrier to the creation of such interfaces has been the lack of methods for modelling emotions in a task-independent environment. Most emotion models for spoken dialog systems are task-dependent and thus cannot be used “as-is” in different applications. This Thesis focuses on improving this, in which it concerns computational modeling of emotion, personality and their interrelationship for task-independent autonomous SCAs. The generation of emotion is driven by needs, inspired by human’s motivational systems. The work in this Thesis is organised in three stages, each one with its own contribution. The first stage involved defining, integrating and quantifying the psychological-based motivational and emotional models sourced from. Later these were transformed into a computational model by implementing them into software entities. The computational model was then incorporated and put to test with an existing SCA host, a HiFi-control agent. The second stage concerned automatic prediction of affect, which has been the main challenge towards the greater aim of infusing social intelligence into the HiFi agent. In recent years, studies on affect detection from voice have moved on to using realistic, non-acted data, which is subtler. However, it is more challenging to perceive subtler emotions and this is demonstrated in tasks such as labelling and machine prediction. In this stage, we attempted to address part of this challenge by considering the roles of user satisfaction ratings and conversational/dialog features as the respective target and predictors in discriminating contentment and frustration, two types of emotions that are known to be prevalent within spoken human-computer interaction. The final stage concerned the evaluation of the emotional model through the HiFi agent. A series of user studies with 70 subjects were conducted in a real-time environment, each in a different phase and with its own conditions. All the studies involved the comparisons between the baseline non-modified and the modified agent. The findings have gone some way towards enhancing our understanding of the utility of emotion in spoken dialog systems in several ways; first, an SCA should not express its emotions blindly, albeit positive. Rather, it should adapt its emotions to user states. Second, low performance in an SCA may be compensated by the exploitation of emotion. Third, the expression of emotion through the exploitation of prosody could better improve users’ perceptions of an SCA compared to exploiting emotions through just lexical contents. Taken together, these findings not only support the success of the emotional model, but also provide substantial evidences with respect to the benefits of adding emotion in an SCA, especially in mitigating users’ frustrations and ultimately improving their satisfactions. Resumen Es relativamente fácil experimentar cierta frustración al interaccionar con agentes conversacionales (Spoken Conversational Agents, SCA), a menudo porque parecen ser un poco insensibles. En general, la calidad de la interacción persona-agente se ve en cierto modo afectada por la incapacidad de los SCAs para identificar y adaptarse al estado emocional de sus usuarios. Actualmente, y debido al creciente atractivo e interés de dichos agentes, surge la necesidad de hacer de los SCAs unos seres cada vez más sociales y emocionalmente inteligentes, es decir, con capacidad para inferir y adaptarse a las emociones de sus interlocutores humanos sobre la marcha, de modo que la interacción resulte más afectiva, empática y, en definitiva, natural. Una interacción mejorada en este sentido permitiría reducir la posible frustración de los usuarios y, en consecuencia, mejorar el nivel de satisfacción alcanzado por los mismos. Estos argumentos justifican y motivan el desarrollo de nuevos SCAs con capacidades socio-emocionales, dotados de interfaces afectivas y socialmente sensibles. Una de las barreras para la creación de tales interfaces ha sido la falta de métodos de modelado de emociones en entornos independientes de tarea. La mayoría de los modelos emocionales empleados por los sistemas de diálogo hablado actuales son dependientes de tarea y, por tanto, no pueden utilizarse "tal cual" en diferentes dominios o aplicaciones. Esta tesis se centra precisamente en la mejora de este aspecto, la definición de modelos computacionales de las emociones, la personalidad y su interrelación para SCAs autónomos e independientes de tarea. Inspirada en los sistemas motivacionales humanos en el ámbito de la psicología, la tesis propone un modelo de generación/producción de la emoción basado en necesidades. El trabajo realizado en la presente tesis está organizado en tres etapas diferenciadas, cada una con su propia contribución. La primera etapa incluyó la definición, integración y cuantificación de los modelos motivacionales de partida y de los modelos emocionales derivados a partir de éstos. Posteriormente, dichos modelos emocionales fueron plasmados en un modelo computacional mediante su implementación software. Este modelo computacional fue incorporado y probado en un SCA anfitrión ya existente, un agente con capacidad para controlar un equipo HiFi, de alta fidelidad. La segunda etapa se orientó hacia el reconocimiento automático de la emoción, aspecto que ha constituido el principal desafío en relación al objetivo mayor de infundir inteligencia social en el agente HiFi. En los últimos años, los estudios sobre reconocimiento de emociones a partir de la voz han pasado de emplear datos actuados a usar datos reales en los que la presencia u observación de emociones se produce de una manera mucho más sutil. El reconocimiento de emociones bajo estas condiciones resulta mucho más complicado y esta dificultad se pone de manifiesto en tareas tales como el etiquetado y el aprendizaje automático. En esta etapa, se abordó el problema del reconocimiento de las emociones del usuario a partir de características o métricas derivadas del propio diálogo usuario-agente. Gracias a dichas métricas, empleadas como predictores o indicadores del grado o nivel de satisfacción alcanzado por el usuario, fue posible discriminar entre satisfacción y frustración, las dos emociones prevalentes durante la interacción usuario-agente. La etapa final corresponde fundamentalmente a la evaluación del modelo emocional por medio del agente Hifi. Con ese propósito se llevó a cabo una serie de estudios con usuarios reales, 70 sujetos, interaccionando con diferentes versiones del agente Hifi en tiempo real, cada uno en una fase diferente y con sus propias características o capacidades emocionales. En particular, todos los estudios realizados han profundizado en la comparación entre una versión de referencia del agente no dotada de ningún comportamiento o característica emocional, y una versión del agente modificada convenientemente con el modelo emocional propuesto. Los resultados obtenidos nos han permitido comprender y valorar mejor la utilidad de las emociones en los sistemas de diálogo hablado. Dicha utilidad depende de varios aspectos. En primer lugar, un SCA no debe expresar sus emociones a ciegas o arbitrariamente, incluso aunque éstas sean positivas. Más bien, debe adaptar sus emociones a los diferentes estados de los usuarios. En segundo lugar, un funcionamiento relativamente pobre por parte de un SCA podría compensarse, en cierto modo, dotando al SCA de comportamiento y capacidades emocionales. En tercer lugar, aprovechar la prosodia como vehículo para expresar las emociones, de manera complementaria al empleo de mensajes con un contenido emocional específico tanto desde el punto de vista léxico como semántico, ayuda a mejorar la percepción por parte de los usuarios de un SCA. Tomados en conjunto, los resultados alcanzados no sólo confirman el éxito del modelo emocional, sino xv que constituyen además una evidencia decisiva con respecto a los beneficios de incorporar emociones en un SCA, especialmente en cuanto a reducir el nivel de frustración de los usuarios y, en última instancia, mejorar su satisfacción.
Resumo:
Analysis of learning data (learning analytics) is a new research field with high growth potential. The main objective of Learning analytics is the analysis of data (interactions being the basic data unit) generated in virtual learning environments, in order to maximize the outcomes of the learning process; however, a consensus has not been reached yet on which interactions must be measured and what is their influence on learning outcomes. This research is grounded on the study of e-learning interaction typologies and their relationship with students? academic performance, by means of a comparative study between different interaction typologies (based on the agents involved, frequency of use and participation mode). The main conclusions are a) that classifications based on agents offer a better explanation of academic performance; and b) that each of the three typologies are able to explain academic performance in terms of some of their components (student-teacher and student-student interactions, evaluating students interactions and active interactions, respectively), with the other components being nonrelevant.
Resumo:
Learning analytics is the analysis of static and dynamic data extracted from virtual learning environments, in order to understand and optimize the learning process. Generally, this dynamic data is generated by the interactions which take place in the virtual learning environment. At the present time, many implementations for grouping of data have been proposed, but there is no consensus yet on which interactions and groups must be measured and analyzed. There is also no agreement on what is the influence of these interactions, if any, on learning outcomes, academic performance or student success. This study presents three different extant interaction typologies in e-learning and analyzes the relation of their components with students? academic performance. The three different classifications are based on the agents involved in the learning process, the frequency of use and the participation mode, respectively. The main findings from the research are: a) that agent-based classifications offer a better explanation of student academic performance; b) that at least one component in each typology predicts academic performance; and c) that student-teacher and student-student, evaluating students, and active interactions, respectively, have a significant impact on academic performance, while the other interaction types are not significantly related to academic performance.
Resumo:
Security intrusions in large systems is a problem due to its lack of scalability with the current IDS-based approaches. This paper describes the RECLAMO project, where an architecture for an Automated Intrusion Response System (AIRS) is being proposed. This system will infer the most appropriate response for a given attack, taking into account the attack type, context information, and the trust and reputation of the reporting IDSs. RECLAMO is proposing a novel approach: diverting the attack to a specific honeynet that has been dynamically built based on the attack information. Among all components forming the RECLAMO's architecture, this paper is mainly focused on defining a trust and reputation management model, essential to recognize if IDSs are exposing an honest behavior in order to accept their alerts as true. Experimental results confirm that our model helps to encourage or discourage the launch of the automatic reaction process.