964 resultados para Integer linear programming
Resumo:
This paper proposes a new strategy to reduce the combinatorial search space of a mixed integer linear programming (MILP) problem. The construction phase of greedy randomized adaptive search procedure (GRASP-CP) is employed to reduce the domain of the integer variables of the transportation model of the transmission expansion planning (TM-TEP) problem. This problem is a MILP and very difficult to solve specially for large scale systems. The branch and bound (BB) algorithm is used to solve the problem in both full and the reduced search space. The proposed method might be useful to reduce the search space of those kinds of MILP problems that a fast heuristic algorithm is available for finding local optimal solutions. The obtained results using some real test systems show the efficiency of the proposed method. © 2012 Springer-Verlag.
Resumo:
Perhaps due to its origins in a production scheduling software called Optimised Production Technology (OPT), plus the idea of focusing on system constraints, many believe that the Theory of Constraints (TOC) has a vocation for optimal solutions. Those who assess TOC according to this perspective indicate that it guarantees an optimal solution only in certain circumstances. In opposition to this view and founded on a numeric example of a production mix problem, this paper shows, by means of TOC assumptions, why the TOC should not be compared to methods intended to seek optimal or the best solutions, but rather sufficiently good solutions, possible in non-deterministic environments. Moreover, we extend the range of relevant literature on product mix decision by introducing a heuristic based on the uniquely identified work that aims at achieving feasible solutions according to the TOC point of view. The heuristic proposed is tested on 100 production mix problems and the results are compared with the responses obtained with the use of Integer Linear Programming. The results show that the heuristic gives good results on average, but performance falls sharply in some situations. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Defining product mix is very important for organisations because it determines how productive resources are allocated among various operations. However, it is often defined subjectively. The methods commonly used for this definition are Integer Linear Programming and heuristics based in Theory of Constraints, which use maximum throughput as a performance measure. Although this measure provides maximum throughput to specific problem, it does not consider aspects of time, as days, utilised to make the throughput. Taking this into account, the aim of this paper is to present a throughput per day approach to define product mix, as well as to propose a constructive heuristic to help in this process. The results show that the proposed heuristic obtained satisfactory approximation when compared to the optimum values obtained by enumeration. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
In this paper, capacitated lot sizing problems in which the classical lot sizing decisions are made considering the transportation costs of the manufactured products were studied. These costs are related to the necessary number of pallets or trucks to pack and/or transport the products from the factory to the warehouse. Three extensions of a mixed integer linear programming model from the literature are considered, representing general cases that are commonly found in companies. These models are tested and evaluated using an optimization package, and a Lagrangian heuristic was developed for one of the extensions proposed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biometria - IBB
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Transmission expansion planning (TEP) is a classic problem in electric power systems. In current optimization models used to approach the TEP problem, new transmission lines and two-winding transformers are commonly used as the only candidate solutions. However, in practice, planners have resorted to non-conventional solutions such as network reconfiguration and/or repowering of existing network assets (lines or transformers). These types of non-conventional solutions are currently not included in the classic mathematical models of the TEP problem. This paper presents the modeling of necessary equations, using linear expressions, in order to include non-conventional candidate solutions in the disjunctive linear model of the TEP problem. The resulting model is a mixed integer linear programming problem, which guarantees convergence to the optimal solution by means of available classical optimization tools. The proposed model is implemented in the AMPL modeling language and is solved using CPLEX optimizer. The Garver test system, IEEE 24-busbar system, and a Colombian system are used to demonstrate that the utilization of non-conventional candidate solutions can reduce investment costs of the TEP problem. (C) 2015 Elsevier Ltd. All rights reserved.