774 resultados para Insulin-resistance Syndrome


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous reports indicate that the expression and/or activity of the protein-tyrosine phosphatase (PTP) LAR are increased in insulin-responsive tissues of obese, insulin-resistant humans and rodents, but it is not known whether these alterations contribute to the pathogenesis of insulin resistance. To address this question, we generated transgenic mice that overexpress human LAR, specifically in muscle, to levels comparable to those reported in insulin-resistant humans. In LAR-transgenic mice, fasting plasma insulin was increased 2.5-fold compared with wild-type controls, whereas fasting glucose was normal. Whole-body glucose disposal and glucose uptake into muscle in vivo were reduced by 39–50%. Insulin injection resulted in normal tyrosyl phosphorylation of the insulin receptor and insulin receptor substrate 1 (IRS-1) in muscle of transgenic mice. However, phosphorylation of IRS-2 was reduced by 62%, PI3′ kinase activity associated with phosphotyrosine, IRS-1, or IRS-2 was reduced by 34–57%, and association of p85α with both IRS proteins was reduced by 39–52%. Thus, overexpression of LAR in muscle causes whole-body insulin resistance, most likely due to dephosphorylation of specific regulatory phosphotyrosines on IRS proteins. Our data suggest that increased expression and/or activity of LAR or related PTPs in insulin target tissues of obese humans may contribute to the pathogenesis of insulin resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulin resistance in skeletal muscle and liver may play a primary role in the development of type 2 diabetes mellitus, and the mechanism by which insulin resistance occurs may be related to alterations in fat metabolism. Transgenic mice with muscle- and liver-specific overexpression of lipoprotein lipase were studied during a 2-h hyperinsulinemic–euglycemic clamp to determine the effect of tissue-specific increase in fat on insulin action and signaling. Muscle–lipoprotein lipase mice had a 3-fold increase in muscle triglyceride content and were insulin resistant because of decreases in insulin-stimulated glucose uptake in skeletal muscle and insulin activation of insulin receptor substrate-1-associated phosphatidylinositol 3-kinase activity. In contrast, liver–lipoprotein lipase mice had a 2-fold increase in liver triglyceride content and were insulin resistant because of impaired ability of insulin to suppress endogenous glucose production associated with defects in insulin activation of insulin receptor substrate-2-associated phosphatidylinositol 3-kinase activity. These defects in insulin action and signaling were associated with increases in intracellular fatty acid-derived metabolites (i.e., diacylglycerol, fatty acyl CoA, ceramides). Our findings suggest a direct and causative relationship between the accumulation of intracellular fatty acid-derived metabolites and insulin resistance mediated via alterations in the insulin signaling pathway, independent of circulating adipocyte-derived hormones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Obese pts have subclinical myocardial dysfunction that may account for their risk of heart failure. We sought the contribution of insulin resistance (IR) to myocardial dysfunction in obesity. Methods. Asymptomatic obese subjects without known cardiac disease underwent clinical evaluation, homeostasis model assessment (HOMA score) as a measure of insulin sensitivity and echocardiographic assessment. After exclusion of DM, overt myocardial dysfunction or ischemia, subclinical myocardial function was assessed by myocardial systolic (Sm) and diastolic velocity (Em) in 79 pts. Association was sought between myocardial function with clinical and biochemical characteristics. Results HOMA score categorized 36 pts as non-IR (HOMA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treatment of schizophrenia with olanzapine and other atypical antipsychotic agents is associated with insulin resistance and diabetes mellitus. The mechanism for this is not understood. Adiponectin is an insulin-sensitizing cytokine secreted by adipocytes. It is present in serum in multimers of varying size. Trimers and hexamers are referred to as low molecular weight (LMW) adiponectin. Larger multimers (12-, 18-, and 24-mers) have been designated high molecular weight (HMW) adiponectin and seem responsible for the insulin-sensitizing action of this adipokine. The aim of this study was to examine total adiponectin and LMW and HMW multimers in serum from patients with schizophrenia treated with either olanzapine (n = 9) or other typical antipsychotics (n = 9) and compare results with 16 healthy sex-, body mass index-, and age-matched controls. The effects of olanzapine on adiponectin protein expression and secretion in in vitro-differentiated primary human adipocytes were also examined. Patients receiving olanzapine had significantly lower total serum adiponectin as compared with those on conventional treatment and controls (5.23 +/- 1.53 ng/mL vs. 8.20 +/- 3.77 ng/mL and 8.78 +/- 3.8 ng/mL; P < 0.05 and P < 0.01, respectively). The HMW adiponectin was also reduced in patients on olanzapine as compared with the disease and healthy control groups (1.67 +/- 0.96 ng/mL vs. 3.87 +/- 2.69 ng/mL and 4.07 +/- 3.2 ng/mL; P < 0.05 for both). The LMW adiponectin was not different between patient groups (P = 0.15) but lower in patients on olanzapine as compared with controls (3.56 +/- 10.85 ng/mL vs. 4.70 +/- 1.4 ng/mL; P < 0.05). In vitro, short duration (up to 7 days) olanzapine exposure had no effect on total adiponectin expression or multimer composition of secreted protein. In summary, this study demonstrates a correlation between olanzapine treatment and reduced serum adiponectin, particularly HMW multimers. This may not be a direct effect of olanzapine on adipocyte expression or secretion of adiponectin. These observations provide insights into possible mechanisms for the association between olanzapine treatment and insulin resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obesity and insulin resistance are important risk factors for atherosclerosis, and elevated level of plasma NEFA is a common feature in individuals with obesity and insulin resistance. Palmitate, one of the most abundant non-esterified SFA in plasma, has been reported to induce insulin resistance in adipose tissues and skeletal muscles and to cause an increased inflammatory response in monocytes. The present study investigated whether palmitate can induce insulin resistance in monocytes and its effect on monocyte adhesion molecular expression (CD11b). Insulin resistance was measured by in vitro uptake of insulin-stimulated 3H-labelled 2-deoxy-D-glucose into THP-1 cells, cell surface CD11b expression was measured by flow cytometry. The data showed that palmitate-induced insulin resistance in THP-1 monocytes was concentration and time dependent (Figure 1). The insulin-stimulated glucose uptake was significantly decreased in cells treated with 300 mM-palmitate compared with control cells (P<0.001) and was observed within 6 h, but was not a result of palmitate toxicity. There was no significant increase in caspase 3 activation (P>0.05). Treatment with 300 mM-palmitate for 24 h also caused a significant increase in surface CD11b expression in both U937 and THP-1 monocytic cell lines and human primary monocytes compared with the control (P<0.001). Both these effects were inhibited by co-incubation with Fumonisin B1, an inhibitor of de novo ceramide synthesis. In conclusion, these data show that palmitate, at physiological concentrations, can cause insulin resistance in monocytes and increase monocyte surface integrin CD11b expression, which is in part the result of the synthesis of ceramide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oleate has been shown to protect against palmitate-induced insulin resistance. The present study investigates mechanisms involved in the interaction between oleate and palmitate on insulin-stimulated glucose uptake by L6 skeletal muscle cells. L6 myotubes were cultured for 6 h with palmitate or oleate alone, and combinations of palmitate with oleate, with and without phosphatidylinositol 3-kinase (PI3-kinase) inhibition. Insulin-stimulated glucose uptake, measured by uptake of 2-deoxy-d-[3H]glucose, was almost completely prevented by 300 microm-palmitate. Cells incubated with oleate up to 750 micromol/l maintained a significant increase in insulin-stimulated glucose uptake. Co-incubation of 50-300 microm-oleate with 300 microm-palmitate partially prevented the decrease in insulin-stimulated glucose uptake associated with palmitate. Adding the PI3-kinase inhibitors wortmannin (10- 7 mol/l) or LY294002 (25 micromol/l) to 50 microm-oleate plus 300 microm-palmitate significantly reduced the beneficial effect of oleate against palmitate-induced insulin resistance, indicating that activation of PI3-kinase is involved in the protective effect of oleate. Thus, the prevention of palmitate-induced insulin resistance by oleate in L6 muscle cells is associated with the ability of oleate to maintain insulin signalling through PI3-kinase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type 2 diabetes is an insidious disorder, with micro and/or macrovascular and nervous damage occurring in many patients before diagnosis. This damage is caused by hyperglycaemia and the diverse effects of insulin resistance. Obesity, in particular central obesity, is a strong pre-disposing factor for type 2 diabetes. Skeletal muscle is the main site of insulin-stimulated glucose disposal and appears to be the first organ that becomes insulin resistant in the diabetic state, with later involvement of adipose tissue and the liver. This study has investigated the use of novel agents to ameliorate insulin-resistance in skeletal muscle as a means of identifying intervention sites against insulin resistance and of improving glucose uptake and metabolism by skeletal muscle. Glucose uptake was measured in vitro by cultured L6 myocytes and isolated muscles from normal and obese diabetic ob/ob mice, using either the tritiated non-metabolised glucose analogue 2-deoxy-D-glucose or by glucose disposal. Agents studied included lipoic acid, isoferulic acid, bradykinin, lipid mobilising factor (provisionally synonymous with Zinca2 glycoprotein) and the trace elements lithium, selenium and chromium. The putative role of TNFa in insulin resistance was also investigated. Lipoic acid improved insulin-stimulated glucose uptake in normal and insulin resistance murine muscles, as well as cultured myocytes. Isoferulic acid, bradykinin and LMF also produced a transient increase in glucose uptake in cultured myocytes. Physiological concentrations of TNFa were found to cause insulin resistance in cultured, but no in excised murine muscles. The effect of the M2 metabolite of the satiety-inducing agent sibutramine on lipolysis in excised murine and human adipocytes was also investigated. M2 increased lipolysis from normal lean and obese ob/ob mouse adipocytes. Arguably the most important observation was that M2 also increased the lipolytic rate in adipocytes from catecholamine resistant obese subjects. The studies reported in this thesis indicate that a diversity of agents can improve glucose uptake and ameliorate insulin resistance. It is likely that these agents are acting via different pathways. This thesis has also shown that M2 can induce lipolysis in both rodent and human adipocytes. M2 hence has potential to directly reduce adiposity, in addition to well documented effects via the central nervous system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study investigated the effect of the two most abundant FFA in plasma – palmitate and oleate – on insulin sensitivity and vascular function (monocyte phenotype and adhesion to endothelium) using in vitro cell culture models and Wistar rats. Palmitate at 300µM for 6h induced insulin resistance in THP-1 monocytes and L6 monocytes. The ceramide synthesis pathway partly accounted for the palmitate-induced insulin resistance in THP-1 monocytes but not for L6 myotubes. Oleate treatment did not induce insulin resistance in either cell type and co-incubation with oleate protected cells from palmitate-induced insulin resistance. Palmitate at 300µN for 24h significantly increased cell surface CD11b and CD36 expression in U937 monocytes. The increase in CD11b and CD36 expression was effectively inhibited by Fumonisin B1, an inhibitor of ceramide synthesis. Oleate treatment did not show any effect on CD11b and CD36 expression and co-incubation with oleate antagonised the effect of palmitate on CD11b and CD36 expression in U937 monocytes. The increase in CD11b expression did not affect U937 monocyte adhesion to ICAM-1. Treating Wistar rats with palmitate for 6h caused a transient delay in glucose disposal and an increase in adhesion of U937 monocytes to the aortic endothelium, particularly at bifurcations. In conclusion, the present study demonstrates that the saturated free fatty acid palmitate induces insulin resistance and a pro-atherogenic phenotype for monocytes, whereas the unsaturated free fatty acid oleate does not. In vivo studies also confirmed that palmitate induces insulin resistance and an increase in monocyte adhesion to aorta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulin resistance is a major endocrinopathy underlying the development of hyperglycaemia and cardiovascular disease in type 2 diabetes. Metformin (a biguanide) and rosiglitazone (a thiazolidinedione) counter insulin resistance, acting by different cellular mechanisms. The two agents can be used in combination to achieve additive glucose-lowering efficacy in the treatment of type 2 diabetes, without stimulating insulin secretion and without causing hypoglycaemia. Both agents also reduce a range of atherothrombotic factors and markers, indicating a lower cardiovascular risk. Early intervention with metformin is already known to reduce myocardial infarction and increase survival in overweight type 2 patients. Recently, a single-tablet combination of metformin and rosiglitazone, Avandamet, has become available. Avandamet is suitable for type 2-diabetic patients who are inadequately controlled by monotherapy with metformin or rosiglitazone. Patients already receiving separate tablets of metformin and rosiglitazone may switch to the single-tablet combination for convenience. Also, early introduction of the combination before maximal titration of one agent can reduce side effects. Use of Avandamet requires attention to the precautions for both metformin and rosiglitazone, especially renal, cardiac and hepatic competence. In summary, Avandamet is a single-tablet metformin-rosiglitazone combination that doubly targets insulin resistance as therapy for hyperglycaemia and vascular risk in type 2 diabetes. © 2004 Blackwell Publishing Ltd.