944 resultados para Information Organization
Resumo:
The Mandate of the National Fisheries Resources Research institute (NaFIRRI) is to manage, promote and undertake applied and basic research of strategic and national importance in aquaculture, capture fisheries, water environment, socio-economics and marketing, information communication management and any emerging issues in the fisheries
Resumo:
Many short-term studies have reported groups of black crested gibbons containing >= 2 adult females (Nomascus concolor). We report the stability of multifemale groups in this species over a period of 6 yr. Our focal group and 2 neighboring groups included 2 breeding females between March 2003 and June 2009. We also habituated 1 multifemale group to observers and present detailed information concerning their social relationships over a 9-mo observation period. We investigated interindividual distances and agonistic behavior among the 5 group members. The spatial relationship between the 3 adult members (1 male, 2 females) formed an equilateral triangle. A subadult male was peripheral to the focal group, while a juvenile male maintained a closer spatial relationship with the adult members. We observed little agonistic behavior among the adult members. The close spatial relationship and lack of high rates of agonistic behavior among females suggest that the benefits of living in a multifemale group were equal to or greater than the costs for both females, given their ecological and social circumstances. The focal group occupied a large home range that was likely to provide sufficient food sources for the 2 females and their offspring. Between March 2003 and June 2009, 1 adult female gave 2 births and the other one gave 1 birth. All individuals in the focal group survived to June 2009. A long-term comparative study focused on females living in multifemale groups and females living in pair-living groups would provide insight into understanding the evolutionary mechanisms of the social system in gibbons.
Resumo:
It is well-known that carbon nanotube (CNT) growth from a dense arrangement of catalyst nanoparticles creates a vertically aligned CNT forest. CNT forests offer attractive anisotropic mechanical, thermal, and electrical properties, and their anisotropic structure is enabled by the self-organization of a large number of CNTs. This process is governed by individual CNT diameter, spacing, and the CNT-to-CNT interaction. However, little information is known about the self-organization of CNTs within a forest. Insight into the self-organization is, however, essential for tailoring the properties of the CNT forests for applications such as electrical interconnects, thermal interfaces, dry adhesives and energy storage. We demonstrate that arrays of CNT micropillars having micron-scale diameters organize in a similar manner as individual CNTs within a forest. For example, as previously demonstrated for individual CNTs within a forest, entanglement of small-diameter CNT micropillars during the initial stage of growth creates a film of entwined pillars. This layer enables coordinated subsequent growth of the pillars in the vertical direction, in a case where isolated pillars would not grow in a self-supporting fashion. Finally, we provide a detailed overview of the self-organization as a function of the diameter, length and spacing of the CNT pillars. This study, which is applicable to many one-dimensional nanostructured films, demonstrates guidelines for tailoring the self-organization which can enable control of the collective mechanical, electrical and interfacial properties of the films. © 2009 Elsevier B.V. All rights reserved.
Resumo:
Sociomateriality has been attracting growing attention in the Organization Studies and Information Systems literatures since 2007, with more than 140 journal articles now referring to the concept. Over 80 percent of these articles have been published since January 2011 and almost all cite the work of Orlikowski (2007, 2010; Orlikowski and Scott 2008) as the source of the concept. Only a few, however, address all of the notions that Orlikowski suggests are entailed in sociomateriality, namely materiality, inseparability, relationality, performativity, and practices, with many employing the concept quite selectively. The contribution of sociomateriality to these literatures is, therefore, still unclear. Drawing on evidence from an ongoing study of the adoption of a computer-based clinical information system in a hospital critical care unit, this paper explores whether the notions, individually and collectively, offer a distinctive and coherent account of the relationship between the social and the material that may be useful in Information Systems research. It is argued that if sociomateriality is to be more than simply a label for research employing a number of loosely related existing theoretical approaches, then studies employing the concept need to pay greater attention to the notions entailed in it and to differences in their interpretation.
Resumo:
Toll-like receptor 3 (TLR3) participates in the innate immune response by recognizing viral pathogens. To investigate grass carp immune system responding to GCRV (grass carp reovirus) infection, the full-length cDNA sequence and genomic organization of grass carp TLR3 (CiTLR3) was identified and characterized. The full-length genome sequence of CiTLR3 is composed of 5668 nucleotides, including five exons and four introns. The full-length of CiTLR3 cDNA is 3681 bp in length and encodes a polypeptide of 904 amino acids with an estimated molecular mass of 102,765 Da and a predicted isoelectric point of 8.35. Analysis of the deduced amino acid sequence indicated that CiTLR3 has four main structural domains, including a signal peptide sequence, 14 LRR (leucine-rich repeat) motifs, a transmembrane region and a TIR (Toll/interleukin-1 receptor) domain. It is most similar to the crucian carp (Carassius auratus) TLR3 amino acid sequence with an identity of 99%. Quantitative RT-PCR analysis showed that CiTLR3 transcripts were significantly up-regulated starting at day 1 and continued through day 7 following GCRV infection (P < 0.05). These data implied that CiTLR3 is involved in antiviral defense, provide molecular and functional information for grass carp TLR3, and implicate their role in mediating immune protection against grass carp viral diseases. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Robotics researchers increasingly agree that ideas from biology and self-organization can strongly benefit the design of autonomous robots. Biological organisms have evolved to perform and survive in a world characterized by rapid changes, high uncertainty, indefinite richness, and limited availability of information. Industrial robots, in contrast, operate in highly controlled environments with no or very little uncertainty. Although many challenges remain, concepts from biologically inspired (bio-inspired) robotics will eventually enable researchers to engineer machines for the real world that possess at least some of the desirable properties of biological organisms, such as adaptivity, robustness, versatility, and agility.
Resumo:
The materials information requirements of the aerospace sector are considered, specifically 'consolidation' (management of raw test data), 'analysis' (investigation of material trade-offs) and 'dissemination (secure distribution of data throughout an organization). An information architecture that satisfies the complex requirements of the aerospace materials industry is discussed and a case-study is presented. © 2003 by Granta Design Limited. Published by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
Notions of figure-ground, inside-outside are difficult to define in a computational sense, yet seem intuitively meaningful. We propose that "figure" is an attention-directed region of visual information processing, and has a non-discrete boundary. Associated with "figure" is a coordinate frame and a "frame curve" which helps initiate the shape recognition process by selecting and grouping convex image chunks for later matching- to-model. We show that human perception is biased to see chunks outside the frame as more salient than those inside. Specific tasks, however, can reverse this bias. Near/far, top/bottom and expansion/contraction also behave similarly.
Resumo:
In a probabilistic cellular automaton in which all local transitions have positive probability, the problem of keeping a bit of information for more than a constant number of steps is nontrivial, even in an infinite automaton. Still, there is a solution in 2 dimensions, and this solution can be used to construct a simple 3-dimensional discrete-time universal fault-tolerant cellular automaton. This technique does not help much to solve the following problems: remembering a bit of information in 1 dimension; computing in dimensions lower than 3; computing in any dimension with non-synchronized transitions. Our more complex technique organizes the cells in blocks that perform a reliable simulation of a second (generalized) cellular automaton. The cells of the latter automaton are also organized in blocks, simulating even more reliably a third automaton, etc. Since all this (a possibly infinite hierarchy) is organized in "software", it must be under repair all the time from damage caused by errors. A large part of the problem is essentially self-stabilization recovering from a mess of arbitrary-size and content caused by the faults. The present paper constructs an asynchronous one-dimensional fault-tolerant cellular automaton, with the further feature of "self-organization". The latter means that unless a large amount of input information must be given, the initial configuration can be chosen to be periodical with a small period.
Resumo:
PURPOSE: To compare health-related quality of life (HRQOL) in patients with metastatic breast cancer receiving the combination of doxorubicin and paclitaxel (AT) or doxorubicin and cyclophosphamide (AC) as first-line chemotherapy treatment. PATIENTS AND METHODS: Eligible patients (n = 275) with anthracycline-naive measurable metastatic breast cancer were randomly assigned to AT (doxorubicin 60 mg/m(2) as an intravenous bolus plus paclitaxel 175 mg/m(2) as a 3-hour infusion) or AC (doxorubicin 60 mg/m(2) plus cyclophosphamide 600 mg/m(2)) every 3 weeks for a maximum of six cycles. Dose escalation of paclitaxel (200 mg/m(2)) and cyclophosphamide (750 mg/m(2)) was planned at cycle 2 to reach equivalent myelosuppression in the two groups. HRQOL was assessed with the European Organization for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire C30 and the EORTC Breast Module at baseline and the start of cycles 2, 4, and 6, and 3 months after the last cycle. RESULTS: Seventy-nine percent of the patients (n = 219) completed a baseline measure. However, there were no statistically significant differences in HRQOL between the two treatment groups. In both groups, selected aspects of HRQOL were impaired over time, with increased fatigue, although some clinically significant improvements in emotional functioning were seen, as well as a reduction in pain over time. Overall, global quality of life was maintained in both treatment groups. CONCLUSION: This information is important when advising women patients of the expected HRQOL consequences of treatment regimens and should help clinicians and their patients make informed treatment decisions.
Resumo:
BACKGROUND: Implementing new practices, such as health information technology (HIT), is often difficult due to the disruption of the highly coordinated, interdependent processes (e.g., information exchange, communication, relationships) of providing care in hospitals. Thus, HIT implementation may occur slowly as staff members observe and make sense of unexpected disruptions in care. As a critical organizational function, sensemaking, defined as the social process of searching for answers and meaning which drive action, leads to unified understanding, learning, and effective problem solving -- strategies that studies have linked to successful change. Project teamwork is a change strategy increasingly used by hospitals that facilitates sensemaking by providing a formal mechanism for team members to share ideas, construct the meaning of events, and take next actions. METHODS: In this longitudinal case study, we aim to examine project teams' sensemaking and action as the team prepares to implement new information technology in a tiertiary care hospital. Based on management and healthcare literature on HIT implementation and project teamwork, we chose sensemaking as an alternative to traditional models for understanding organizational change and teamwork. Our methods choices are derived from this conceptual framework. Data on project team interactions will be prospectively collected through direct observation and organizational document review. Through qualitative methods, we will identify sensemaking patterns and explore variation in sensemaking across teams. Participant demographics will be used to explore variation in sensemaking patterns. DISCUSSION: Outcomes of this research will be new knowledge about sensemaking patterns of project teams, such as: the antecedents and consequences of the ongoing, evolutionary, social process of implementing HIT; the internal and external factors that influence the project team, including team composition, team member interaction, and interaction between the project team and the larger organization; the ways in which internal and external factors influence project team processes; and the ways in which project team processes facilitate team task accomplishment. These findings will lead to new methods of implementing HIT in hospitals.
Resumo:
BACKGROUND: The availability of multiple avian genome sequence assemblies greatly improves our ability to define overall genome organization and reconstruct evolutionary changes. In birds, this has previously been impeded by a near intractable karyotype and relied almost exclusively on comparative molecular cytogenetics of only the largest chromosomes. Here, novel whole genome sequence information from 21 avian genome sequences (most newly assembled) made available on an interactive browser (Evolution Highway) was analyzed. RESULTS: Focusing on the six best-assembled genomes allowed us to assemble a putative karyotype of the dinosaur ancestor for each chromosome. Reconstructing evolutionary events that led to each species' genome organization, we determined that the fastest rate of change occurred in the zebra finch and budgerigar, consistent with rapid speciation events in the Passeriformes and Psittaciformes. Intra- and interchromosomal changes were explained most parsimoniously by a series of inversions and translocations respectively, with breakpoint reuse being commonplace. Analyzing chicken and zebra finch, we found little evidence to support the hypothesis of an association of evolutionary breakpoint regions with recombination hotspots but some evidence to support the hypothesis that microchromosomes largely represent conserved blocks of synteny in the majority of the 21 species analyzed. All but one species showed the expected number of microchromosomal rearrangements predicted by the haploid chromosome count. Ostrich, however, appeared to retain an overall karyotype structure of 2n=80 despite undergoing a large number (26) of hitherto un-described interchromosomal changes. CONCLUSIONS: Results suggest that mechanisms exist to preserve a static overall avian karyotype/genomic structure, including the microchromosomes, with widespread interchromosomal change occurring rarely (e.g., in ostrich and budgerigar lineages). Of the species analyzed, the chicken lineage appeared to have undergone the fewest changes compared to the dinosaur ancestor.
Resumo:
HYPERJOSEPH combines hypertext, information retrieval, literary studies, Biblical scholarship, and linguistics. Dialectically, this paper contrasts hypertextual form (the extant tool) and AI-captured content (a desideratum), in the HYPERJOSEPH project. The discussion is more general and oriented to epistemology.
Resumo:
Reaching to visual targets engages the nervous system in a series of transformations between sensory information and motor commands. That which remains to be determined is the extent to which the processes that mediate sensorimotor adaptation to novel environments engage neural circuits that represent the required movement in joint-based or muscle-based coordinate systems. We sought to establish the contribution of these alternative representations to the process of visuomotor adaptation. To do so we applied a visuomotor rotation during a center-out isometric torque production task that involved flexion/extension and supination/pronation at the elbow-joint complex. In separate sessions, distinct half-quadrant rotations (i.e., 45°) were applied such that adaptation could be achieved either by only rescaling the individual joint torques (i.e., the visual target and torque target remained in the same quadrant) or by additionally requiring torque reversal at a contributing joint (i.e., the visual target and torque target were in different quadrants). Analysis of the time course of directional errors revealed that the degree of adaptation was lower (by ~20%) when reversals in the direction of joint torques were required. It has been established previously that in this task space, a transition between supination and pronation requires the engagement of a different set of muscle synergists, whereas in a transition between flexion and extension no such change is required. The additional observation that the initial level of adaptation was lower and the subsequent aftereffects were smaller, for trials that involved a pronation–supination transition than for those that involved a flexion–extension transition, supports the conclusion that the process of adaptation engaged, at least in part, neural circuits that represent the required motor output in a muscle-based coordinate system.
Resumo:
Background: Gene networks are considered to represent various aspects of molecular biological systems meaningfully because they naturally provide a systems perspective of molecular interactions. In this respect, the functional understanding of the transcriptional regulatory network is considered as key to elucidate the functional organization of an organism.