982 resultados para Infiltration cellulaire
Resumo:
The aim of this study was to evaluate two root canal filling techniques used in teeth that had their apical foramen disrupted and compare the apical infiltration with an ideal clinical situation. Twenty-seven freshly extracted single-rooted teeth were selected and radiographed to confirm the existence of a single and straight root canal. The crowns were removed at a mean distance of 11 mm from the apex. The teeth had the root canals instrumented and were randomly assigned to 3 groups (n=9): ND group-root canals were filled using the lateral compaction technique and no disruption was performed; DRF group-the apical constriction was disrupted by advancing a #40 K-file 1 mm beyond the original working length, the canals were reinstrumented to create an apical ledge at 1 mm from the apical foramen and were obturated with a master gutta-percha cone with same size as the last file used for reinstrumentation; DF group - the teeth had the apical constriction disrupted and the canals were obturated with a master gutta-percha cone that fit at 1 mm from the apex. The teeth were submitted to dye leakage test with Rhodamine B for 7 days, using vaccum on the initial 5 min. The teeth were sectioned longitudinally and the leakage was measured in a linear fashion from apex to crown. There was no statistically significant difference (p>0.05) between the groups that had the apical foramen disrupted (DF, DRF), but significant difference was found between the disrupted groups and the non-disrupted one (p<0.01). In conclusion, none of the evaluated techniques was able to prevent apical infiltration, so working length so the working length determination has to be established and maintained carefully.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Enamel white spot subsurface lesions compromise esthetics and precede cavitation; therefore, they must be halted. The aim of this study was to evaluate the effect of a caries infiltration technique and fluoride therapy on the microhardness of enamel carious lesions. Subsurface carious lesions were produced in 60 bovine specimens with polished enamel surfaces. The specimens were divided into four groups (n=15), according to the treatment used: CON, control immersion in artificial saliva; DF, daily 0.05% fluoride solution; WF, weekly 2% fluoride gel; and IC, resin infiltration (Icon). The specimens were kept in artificial saliva and evaluated for microhardness at five points: baseline, after caries production, after four and eight weeks of treatment, and a final evaluation after being submitted to a new acid challenge. The repeated-measures analysis of variance showed significant differences according to the type of treatment (TREAT; p=0.001) and time of evaluation (EV; p=0.001). The results of the Tukey test were TREAT: CON = 45.18 (+/- 29.17)a, DF = 107.75 (+/- 67.38)b, WF = 83.25 (+/- 51.17)c, and IC = 160.83 (+/- 91.11)d. Analysis of correlation between the TREAT and EV factors showed no significant differences for DF (138.63 +/- 38.94) and IC (160.99 +/- 46.13) after the new acid challenge. The microhardness results in decreasing order after eight weeks were IC > DF > WF > CON. It was concluded that the microhardness of carious lesions increased with the infiltration of resin, while the final microhardness after a new acid challenge was similar for DF and IC.
Resumo:
Ischemia/reperfusion (I/R) injury, a common early feature in renal transplantation, results from both free radical species generation and local inflammatory responses that attract different types of cells. The interaction with infiltrating leukocytes could promote damage and death of resident renal cells contributing to worsening of renal function. It has been shown that depletion of host T cells protects against kidney damage after I/R injury, although the mechanism is not fully understood. FTY720, a synthetic analog of a natural product extracted from Isaria sincclairii has shown modulatory properties in experimental models of autoimmune disease, transplantation, and I/R injury. FTY720 alters lymphocyte responses to chemokine homing signals, thereby decreasing the number of lymphocytes in inflammatory sites. We evaluated renal function in mice at 3, 5, and 7 days after I/R injury in the presence or absence of FTY720 treatment. FTY720 treatment promoted earlier recovery of renal function associated with a lower number of renal-infiltrating lymphocytes. These findings confirm previous results showing a protective effect of FTY720 in I/R injury models.
Resumo:
In the present study, polymorphonuclear neutrophils (PMN) were enumerated to evaluate acute uterine inflammation after artificial insemination in the bitch. It was concluded that the canine seminal plasma possessed an immunomodulating action. However, the most commonly used extender for freezing canine semen (Tris glucose with egg yolk and glycerol) was a potential inducer of uterine inflammation. (c) 2006 Published by Elsevier B.V.
Resumo:
Water infiltration into soil is one of the basic factors for estimating irrigation intensity according to the plants' requirements; this is aimed at avoiding problems of surface run-off and degradation. The purpose of the present investigation was to determine the spatial variation of infiltration and its relationship to some physical properties of soil by means of geostatistical techniques in Typic Plinthaquult soils having average texture and flat relief. A 113 point mesh was designned, having a regular distance of 10 m between points, samples being taken from 0 to 0.20 meters depth. Sand, silt and clay content, bulk density, macroporosity, microporosity and total porosity were determined. Infiltration tests were carried out in the field by means of a 15 cm diameter ring. Descriptive statistics and geostatistics were used for analysing the data. Infiltration, silt and microporosity data did not fit a normal distribution curve. Infiltration had high variability, having an average 36.03 mm h(-1). Total porosity was 56.73%, this being the only property that did not show spatial dependency. The smallest ranges were observed for bulk density, macroporosity and microporosity, having values of less than 40 m. The smallest degrees of spatial dependence were observed for infiltration, silt and clay, evidence also being shown of the influence of silt and clay on infiltration rate. Contour maps were constructed; fitting them to the semivariogram models, together with studying the correlations, led to establishing relationships between the properties.
Color Stability of Resin Used for Caries Infiltration After Exposure to Different Staining Solutions
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present study was aimed at identifying laminar lesions and leukocyte infiltration in hoof laminar tissue of horses with colic syndrome and its correlation with the total leukocyte count before death. Six healthy horses were used as control group (CG), and eighteen horses with lethal gastrointestinal disease were divided into two groups: leukopenic group (LG) with seven leukopenic horses, and non-leukopenic group (NLG) with 11 horses with total leukocyte count within reference range for the species. Leukocyte infiltration was examined by immunohistochemistry. Laminar lesions were observed in both LG and NLG, with no differences in severity between them. LG showed increase of the leukocyte infiltration in the hoof laminar tissue, when compared to CG and NLG. Horses with severe colic syndrome (LG and NLG) developed intense laminar lesions without clinical signs of laminitis, with increased leukocyte infiltration. However, the LG demonstrated an even higher increase of leukocyte infiltration compared to both CG and NLG.
Resumo:
This paper studies attained microstructures and reactive mechanisms involved in vacuum infiltration of copper aluminate preforms with liquid aluminium. At high temperatures, under vacuum, the inherent alumina film enveloping the metal is overcome, and aluminium is expected to reduce copper aluminate, rendering alumina and copper. Under this approach, copper aluminate toils as a controlled infiltration path for aluminium, resulting in reactive wetting and infiltration of the preforms. Ceramic preforms containing a mixture of Al2O3 and CuAl2O4 were infiltrated with aluminium under distinct vacuum levels and temperatures, and the resulting reaction and infiltration behaviour is discussed. Copper aluminates stability ranges depend on vacuum level and oxygen partial pressure, which determine both CuAl2O4 and CuAlO2 ability for liquid aluminium infiltration. At 1100 °C and 0.76 atm vacuum level CuAl2O4 is stable, indicating pO2 above 0.11 atm. Reactive infiltration is achieved via reaction between aluminium and CuAl2O4; however, fast formation of an alumina film blocking liquid aluminium wicking results in incipient infiltration. At 1000 °C and 3.8 × 10−7 atm vacuum level, CuAlO2 decomposes to Cu and Al2O3 indicating a pO2 below 6.0 × 10−7 atm; infiltration of the ceramic is hindered by the non-wetting behaviour of the resulting metal alloy. At 1000 °C and 1.9 × 10−6 atm vacuum level CuAlO2 is stable, indicating pO2 above 6.0 × 10−7 atm. Extensive infiltration is achieved via redox reaction between aluminium and CuAlO2, rendering a microstructure characterised by uniform distribution of alumina particles amid an aluminium matrix. This work evidences that liquid aluminium infiltration upon copper aluminate-rich preforms is a feasible route to produce Al–matrix alumina-reinforced composites. The associated reduction reaction renders alumina, as fine particulate composite reinforcements, and copper, which dissolves in liquid aluminium contributing as a matrix strengthener.
Resumo:
Warrick and Hussen developed in the nineties of the last century a method to scale Richards' equation (RE) for similar soils. In this paper, new scaled solutions are added to the method of Warrick and Hussen considering a wider range of soils regardless of their dissimilarity. Gardner-Kozeny hydraulic functions are adopted instead of Brooks-Corey functions used originally by Warrick and Hussen. These functions allow to reduce the dependence of the scaled RE on the soil properties. To evaluate the proposed method (PM), the scaled RE was solved numerically using a finite difference method with a fully implicit scheme. Three cases were considered: constant-head infiltration, constant-flux infiltration, and drainage of an initially uniform wet soil. The results for five texturally different soils ranging from sand to clay (adopted from the literature) showed that the scaled solutions were invariant to a satisfactory degree. However, slight deviations were observed mainly for the sandy soil. Moreover, the scaled solutions deviated when the soil profile was initially wet in the infiltration case or when deeply wet in the drainage condition. Based on the PM, a Philip-type model was also developed to approximate RE solutions for the constant-head infiltration. The model showed a good agreement with the scaled RE for the same range of soils and conditions, however only for Gardner-Kozeny soils. Such a procedure reduces numerical calculations and provides additional opportunities for solving the highly nonlinear RE for unsaturated water flow in soils. (C) 2011 Elsevier B.V. All rights reserved.