975 resultados para Industrial equipment
Resumo:
The aim of this paper is to advance understandings of the processes of cluster-building and evolution, or transformative and adaptive change, through the conscious design and reflective activities of private and public actors. A model of transformation is developed which illustrates the importance of actors becoming exposed to new ideas and visions for industrial change by political entrepreneurs and external networks. Further, actors must be guided in their decision-making and action by the new vision, and this requires that they are persuaded of its viability through the provision of test cases and supportive resources and institutions. In order for new ideas to become guiding models, actors must be convinced of their desirability through the portrayal of models as a means of confronting competitive challenges and serving the economic interests of the city/region. Subsequent adaptive change is iterative and reflexive, involving a process of strategic learning amongst key industrial and political actors.
Resumo:
This thesis reports on the investigations, simulations and analyses of novel power electronics topologies and control strategies. The research is financed by an Australian Research Council (ARC) Linkage (07-09) grant. Therefore, in addition to developing original research and contributing to the available knowledge of power electronics, it also contributes to the design of a DC-DC converter for specific application to the auxiliary power supply in electric trains. Specifically, in this regard, it contributes to the design of a 7.5 kW DC-DC converter for the industrial partner (Schaffler and Associates Ltd) who supported this project. As the thesis is formatted as a ‘thesis by publication’, the contents are organized around published papers. The research has resulted in eleven papers, including seven peer reviewed and published conference papers, one published journal paper, two journal papers accepted for publication and one submitted journal paper (provisionally accepted subject to few changes). In this research, several novel DC-DC converter topologies are introduced, analysed, and tested. The similarity of all of the topologies devised lies in their ‘current circulating’ switching state, which allows them to store some energy in the inductor, as extra inductor current. The stored energy may be applied to enhance the performance of the converter in the occurrence of load current or input voltage disturbances. In addition, when there is an alternating load current, the ability to store energy allows the converter to perform satisfactorily despite frequently and highly varying load current. In this research, the capability of current storage has been utilised to design topologies for specific applications, and the enhancement of the performance of the considered applications has been illustrated. The simplest DC-DC converter topology, which has a ‘current circulating’ switching state, is the Positive Buck-Boost (PBB) converter (also known as the non-inverting Buck-Boost converter). Usually, the topology of the PBB converter is operating as a Buck or a Boost converter in applications with widely varying input voltage or output reference voltage. For example, in electric railways (the application of our industrial partner), the overhead line voltage alternates from 1000VDC to 500VDC and the required regulated voltage is 600VDC. In the course of this research, our industrial partner (Schaffler and Associates Ltd) industrialized a PBB converter–the ‘Mudo converter’–operating at 7.5 kW. Programming the onboard DSP and testing the PBB converter in experimental and nominal power and voltage was part of this research program. In the earlier stages of this research, the advantages and drawbacks of utilization of the ‘current circulating’ switching state in the positive Buck-Boost converter were investigated. In brief, the advantages were found to be robustness against input voltage and current load disturbances, and the drawback was extra conduction and switching loss. Although the robustness against disturbances is desirable for many applications, the price of energy loss must be minimized to attract attention to the utilization of the PBB converter. In further stages of this research, two novel control strategies for different applications were devised to minimise the extra energy loss while the advantages of the positive Buck-Boost converter were fully utilized. The first strategy is Smart Load Controller (SLC) for applications with pre-knowledge or predictability of input voltage and/or load current disturbances. A convenient example of these applications is electric/hybrid cars where a master controller commands all changes in loads and voltage sources. Therefore, the master controller has a pre-knowledge of the load and input voltage disturbances so it can apply the SLC strategy to utilize robustness of the PBB converter. Another strategy aiming to minimise energy loss and maximise the robustness in the face of disturbance is developed to cover applications with unexpected disturbances. This strategy is named Dynamic Hysteresis Band (DHB), and is used to manipulate the hysteresis band height after occurrence of disturbance to reduce dynamics of the output voltage. When no disturbance has occurred, the PBB converter works with minimum inductor current and minimum energy loss. New topologies based on the PBB converter have been introduced to address input voltage disturbances for different onboard applications. The research shows that the performance of applications of symmetrical/asymmetrical multi-level diode-clamped inverters, DC-networks, and linear-assisted RF amplifiers may be enhanced by the utilization of topologies based on the PBB converter. Multi-level diode-clamped inverters have the problem of DC-link voltage balancing when the power factor of their load closes to unity. This research has shown that this problem may be solved with a suitable multi-output DC-DC converter supplying DClink capacitors. Furthermore, the multi-level diode-clamped inverters supplied with asymmetrical DC-link voltages may improve the quality of load voltage and reduce the level of Electromagnetic Interference (EMI). Mathematical analyses and experiments on supplying symmetrical and asymmetrical multi-level inverters by specifically designed multi-output DC-DC converters have been reported in two journal papers. Another application in which the system performance can be improved by utilization of the ‘current circulating’ switching state is linear-assisted RF amplifiers in communicational receivers. The concept of ‘linear-assisted’ is to divide the signal into two frequency domains: low frequency, which should be amplified by a switching circuit; and the high frequency domain, which should be amplified by a linear amplifier. The objective is to minimize the overall power loss. This research suggests using the current storage capacity of a PBB based converter to increase its bandwidth, and to increase the domain of the switching converter. The PBB converter addresses the industrial demand for a DC-DC converter for the application of auxiliary power supply of a typical electric train. However, after testing the industrial prototype of the PBB converter, there were some voltage and current spikes because of switching. To attenuate this problem without significantly increasing the switching loss, the idea of Active Gate Signalling (AGS) is presented. AGS suggests a smart gate driver that selectively controls the switching process to reduce voltage/current spikes, without unacceptable reduction in the efficiency of switching.
Resumo:
Draglines are massive machines commonly used in surface mining to strip overburden, revealing the targeted minerals for extraction. Automating some or all of the phases of operation of these machines offers the potential for significant productivity and maintenance benefits. The mining industry has a history of slow uptake of automation systems due to the challenges contained in the harsh, complex, three-dimensional (3D), dynamically changing mine operating environment. Robotics as a discipline is finally starting to gain acceptance as a technology with the potential to assist mining operations. This article examines the evolution of robotic technologies applied to draglines in the form of machine embedded intelligent systems. Results from this work include a production trial in which 250,000 tons of material was moved autonomously, experiments demonstrating steps towards full autonomy, and teleexcavation experiments in which a dragline in Australia was tasked by an operator in the United States.
Resumo:
The high moisture content of mill mud (typically 75–80% for Australian factories) results in high transportation costs for the redistribution of mud onto cane farms. The high transportation cost relative to the nutrient value of the mill mud results in many milling companies subsidising the cost of this recycle to ensure a wide distribution across the cane supply area. An average mill would generate about 100 000 t of mud (at 75% moisture) in a crushing season. The development of mud processing facilities that will produce a low moisture mud that can be effectively incorporated into cane land with existing or modified spreading equipment will improve the cost efficiency of mud redistribution to farms; provide an economical fertiliser alternative to more farms in the supply area; and reduce the potential for adverse environmental impacts from farms. A research investigation assessing solid bowl decanter centrifuges to produce low moisture mud with low residual pol was undertaken and the results compared to the performance of existing rotary vacuum filters in factory trials. The decanters were operated on filter mud feed in parallel with the rotary vacuum filters to allow comparisons of performance. Samples of feed, mud product and filtrate were analysed to provide performance indicators. The decanter centrifuge could produce mud cakes with very low moistures and residual pol levels. Spreading trials in cane fields indicated that the dry cake could be spread easily by standard mud trucks and by trucks designed specifically to spread fertiliser.
Resumo:
Anecdotal evidence from the infrastructure and building sectors highlights issues of drugs and alcohol and its association with safety risk on construction sites. Operating machinery and mobile equipment, proximity to live traffic together with congested sites, electrical equipment and operating at heights conspire to accentuate the potential adverse impact of drugs and alcohol in the workplace. While most Australian jurisdictions have identified this as a critical safety issue, information is limited regarding the prevalence of alcohol and other drugs in the workplace and there is limited evidential guidance regarding how to effectively and efficiently address such an issue. No known study has scientifically evaluated the relationship between the use of drugs and alcohol and safety impacts in construction, and there has been only limited adoption of nationally coordinated strategies, supported by employers and employees to render it socially unacceptable to arrive at a construction workplace with impaired judgement from drugs and alcohol. A nationally consistent collaborative approach across the construction workforce - involving employers and employees; clients; unions; contractors and sub-contractors is required to engender a cultural change in the construction workforce – in a similar manner to the on-going initiative in securing a cultural change to drink-driving in our society where peer intervention and support is encouraged. This study has four key objectives. Firstly, using the standard World Health Organisation AUDIT, a national qualitative and quantitative assessment of the use of drugs and alcohol will be carried out. This will build upon similar studies carried out in the Australian energy and mining sectors. Secondly, the development of an appropriate industry policy will adopt a non-punitive and rehabilitative approach developed in consultation with employers and employees across the infrastructure and building sectors, with the aim it be adopted nationally for adoption at the construction workplace. Thirdly, an industry-specific cultural change management program will be developed through a nationally collaborative approach to reducing the risk of impaired performance on construction sites and increasing workers’ commitment to drugs and alcohol safety. Finally, an implementation plan will be developed from data gathered from both managers and construction employees. Such an approach stands to benefit not only occupational health and safety, through a greater understanding of the safety impacts of alcohol and other drugs at work, but also alcohol and drug use as a wider community health issue. This paper will provide an overview of the background and significance of the study as well as outlining the proposed methodology that will be used to evaluate the safety impacts of alcohol and other drugs in the construction industry.
Resumo:
Throughout history, developments in medicine have aimed to improve patient quality of life, and reduce the trauma associated with surgical treatment. Surgical access to internal organs and bodily structures has been traditionally via large incisions. Endoscopic surgery presents a technique for surgical access via small (1 Omm) incisions by utilising a scope and camera for visualisation of the operative site. Endoscopy presents enormous benefits for patients in terms of lower post operative discomfort, and reduced recovery and hospitalisation time. Since the first gall bladder extraction operation was performed in France in 1987, endoscopic surgery has been embraced by the international medical community. With the adoption of the new technique, new problems never previously encountered in open surgery, were revealed. One such problem is that the removal of large tissue specimens and organs is restricted by the small incision size. Instruments have been developed to address this problem however none of the devices provide a totally satisfactory solution. They have a number of critical weaknesses: -The size of the access incision has to be enlarged, thereby compromising the entire endoscopic approach to surgery. - The physical quality of the specimen extracted is very poor and is not suitable to conduct the necessary post operative pathological examinations. -The safety of both the patient and the physician is jeopardised. The problem of tissue and organ extraction at endoscopy is investigated and addressed. In addition to background information covering endoscopic surgery, this thesis describes the entire approach to the design problem, and the steps taken before arriving at the final solution. This thesis contributes to the body of knowledge associated with the development of endoscopic surgical instruments. A new product capable of extracting large tissue specimens and organs in endoscopy is the final outcome of the research.
Resumo:
The numerical modelling of electromagnetic waves has been the focus of many research areas in the past. Some specific applications of electromagnetic wave scattering are in the fields of Microwave Heating and Radar Communication Systems. The equations that govern the fundamental behaviour of electromagnetic wave propagation in waveguides and cavities are the Maxwell's equations. In the literature, a number of methods have been employed to solve these equations. Of these methods, the classical Finite-Difference Time-Domain scheme, which uses a staggered time and space discretisation, is the most well known and widely used. However, it is complicated to implement this method on an irregular computational domain using an unstructured mesh. In this work, a coupled method is introduced for the solution of Maxwell's equations. It is proposed that the free-space component of the solution is computed in the time domain, whilst the load is resolved using the frequency dependent electric field Helmholtz equation. This methodology results in a timefrequency domain hybrid scheme. For the Helmholtz equation, boundary conditions are generated from the time dependent free-space solutions. The boundary information is mapped into the frequency domain using the Discrete Fourier Transform. The solution for the electric field components is obtained by solving a sparse-complex system of linear equations. The hybrid method has been tested for both waveguide and cavity configurations. Numerical tests performed on waveguides and cavities for inhomogeneous lossy materials highlight the accuracy and computational efficiency of the newly proposed hybrid computational electromagnetic strategy.