971 resultados para Inclusive Development
Resumo:
Solar radiation sustains and affects all life forms on Earth. In recent years, the increase in environmental levels of solar-UV radiation due to depletion of the stratospheric ozone layer, as a result of anthropogenic emission of destructive chemicals, has highlighted serious issues of social concern. This becomes still more dramatic in tropical and subtropical regions, where the intensity of solar radiation is higher. To better understand the impact of the harmful effects of solar-UV radiation on the DNA molecule, we developed a reliable biological monitoring system based on the exposure of plasmid DNA to artificial UV lamps and sunlight. The determination and quanti. cation of different types of UV photoproducts were performed through the use of specific DNA repair enzymes and antibodies. As expected, a significant number of CPDs and 6-4PPs was observed when the DNA-dosimeter system was exposed to increasing doses of UVB radiation. Moreover, CPDs could also be clearly detected in plasmid DNA when this system was exposed to either UVA or directly to sunlight. Interestingly, although less abundant, 6-4PPs and oxidative DNA damage were also generated after exposure to both UVA and sunlight. These results confirm the genotoxic potential of sunlight, reveal that UVA may also produce CPDs and 6-4PPs directly in naked DNA and demonstrate the applicability of a DNA-dosimeter system for monitoring the biological effects of solar-UV radiation.
Resumo:
The energy dependence of the neutrino-iron and antineutrino-iron inclusive charged-current cross sections and their ratio have been measured using a high-statistics sample with the MINOS near detector exposed to the NuMI beam from the main injector at Fermilab. Neutrino and antineutrino fluxes were determined using a low hadronic energy subsample of charged-current events. We report measurements of nu-Fe ((nu) over bar - Fe) cross section in the energy range 3-50 GeV (5-50 GeV) with precision of 2%-8% (3%-9%) and their ratio which is measured with precision 2%-8%. The data set spans the region from low energy, where accurate measurements are sparse, up to the high-energy scaling region where the cross section is well understood.
Resumo:
Measurements of electrons from the decay of open-heavy-flavor mesons have shown that the yields are suppressed in Au+Au collisions compared to expectations from binary-scaled p+p collisions. These measurements indicate that charm and bottom quarks interact with the hot dense matter produced in heavy-ion collisions much more than expected. Here we extend these studies to two-particle correlations where one particle is an electron from the decay of a heavy-flavor meson and the other is a charged hadron from either the decay of the heavy meson or from jet fragmentation. These measurements provide more detailed information about the interactions between heavy quarks and the matter, such as whether the modification of the away-side-jet shape seen in hadron-hadron correlations is present when the trigger particle is from heavy-meson decay and whether the overall level of away-side-jet suppression is consistent. We statistically subtract correlations of electrons arising from background sources from the inclusive electron-hadron correlations and obtain two-particle azimuthal correlations at root s(NN) = 200 GeV between electrons from heavy-flavor decay with charged hadrons in p+p and also first results in Au+Au collisions. We find the away-side-jet shape and yield to be modified in Au+Au collisions compared to p+p collisions.
Resumo:
The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the invariant differential cross section for production of K(S)(0), omega, eta', and phi mesons in p + p collisions at root s 200 GeV. Measurements of omega and phi production in different decay channels give consistent results. New results for the omega are in agreement with previously published data and extend the measured p(T) coverage. The spectral shapes of all hadron transverse momentum distributions measured by PHENIX are well described by a Tsallis distribution functional form with only two parameters, n and T, determining the high-p(T) and characterizing the low-p(T) regions of the spectra, respectively. The values of these parameters are very similar for all analyzed meson spectra, but with a lower parameter T extracted for protons. The integrated invariant cross sections calculated from the fitted distributions are found to be consistent with existing measurements and with statistical model predictions.
Resumo:
Measurements of double-helicity asymmetries in inclusive hadron production in polarized p + p collisions are sensitive to helicity-dependent parton distribution functions, in particular, to the gluon helicity distribution, Delta g. This study focuses on the extraction of the double-helicity asymmetry in eta production ((p) over right arrow + (p) over right arrow -> eta + X), the eta cross section, and the eta/pi(0) cross section ratio. The cross section and ratio measurements provide essential input for the extraction of fragmentation functions that are needed to access the helicity-dependent parton distribution functions.
Resumo:
We report the measurement of the transverse momentum dependence of inclusive J/psi polarization in p + p collisions at root s = 200 GeV performed by the PHENIX Experiment at the Relativistic Heavy Ion Collider. The J/psi polarization is studied in the helicity, Gottfried-Jackson, and Collins-Soper frames for p(T) < 5 GeV/c and vertical bar y vertical bar < 0.35. The polarization in the helicity and Gottfried-Jackson frames is consistent with zero for all transverse momenta, with a slight (1.8 sigma) trend towards longitudinal polarization for transverse momenta above 2 GeV/c. No conclusion is allowed due to the limited acceptance in the Collins-Soper frame and the uncertainties of the current data. The results are compared to observations for other collision systems and center of mass energies and to different quarkonia production models.
Resumo:
PHENIX has measured the e(+)e(-) pair continuum in root s(NN) = 200 GeV Au+Au and p+p collisions over a wide range of mass and transverse momenta. The e(+)e(-) yield is compared to the expectations from hadronic sources, based on PHENIX measurements. In the intermediate-mass region, between the masses of the phi and the J/psi meson, the yield is consistent with expectations from correlated c (c) over bar production, although other mechanisms are not ruled out. In the low-mass region, below the phi, the p+p inclusive mass spectrum is well described by known contributions from light meson decays. In contrast, the Au+Au minimum bias inclusive mass spectrum in this region shows an enhancement by a factor of 4.7 +/- 0.4(stat) +/- 1.5(syst) +/- 0.9(model). At low mass (m(ee) < 0.3 GeV/c(2)) and high p(T) (1 < p(T) < 5 GeV/c) an enhanced e(+)e(-) pair yield is observed that is consistent with production of virtual direct photons. This excess is used to infer the yield of real direct photons. In central Au+Au collisions, the excess of the direct photon yield over the p+p is exponential in p(T), with inverse slope T = 221 +/- 19(stat) +/- 19(syst) MeV. Hydrodynamical models with initial temperatures ranging from T(init) similar or equal to 300-600 MeV at times of 0.6-0.15 fm/c after the collision are in qualitative agreement with the direct photon data in Au+Au. For low p(T) < 1 GeV/c the low-mass region shows a further significant enhancement that increases with centrality and has an inverse slope of T similar or equal to 100 MeV. Theoretical models underpredict the low-mass, low-p(T) enhancement.
Resumo:
The double helicity asymmetry in neutral pion production for p(T) = 1 to 12 GeV/c was measured with the PHENIX experiment to access the gluon-spin contribution, Delta G, to the proton spin. Measured asymmetries are consistent with zero, and at a theory scale of mu 2 = 4 GeV(2) a next to leading order QCD analysis gives Delta G([0.02,0.3]) = 0.2, with a constraint of -0.7 < Delta G([0.02,0.3]) < 0.5 at Delta chi(2) = 9 (similar to 3 sigma) for the sampled gluon momentum fraction (x) range, 0.02 to 0.3. The results are obtained using predictions for the measured asymmetries generated from four representative fits to polarized deep inelastic scattering data. We also consider the dependence of the Delta G constraint on the choice of the theoretical scale, a dominant uncertainty in these predictions.
Resumo:
The PHENIX experiment has measured the suppression of semi-inclusive single high-transverse-momentum pi(0)'s in Au+Au collisions at root s(NN) = 200 GeV. The present understanding of this suppression is in terms of energy loss of the parent (fragmenting) parton in a dense color-charge medium. We have performed a quantitative comparison between various parton energy-loss models and our experimental data. The statistical point-to-point uncorrelated as well as correlated systematic uncertainties are taken into account in the comparison. We detail this methodology and the resulting constraint on the model parameters, such as the initial color-charge density dN(g)/dy, the medium transport coefficient <(q) over cap >, or the initial energy-loss parameter epsilon(0). We find that high-transverse-momentum pi(0) suppression in Au+Au collisions has sufficient precision to constrain these model-dependent parameters at the +/- 20-25% (one standard deviation) level. These constraints include only the experimental uncertainties, and further studies are needed to compute the corresponding theoretical uncertainties.
Resumo:
Transverse momentum distributions and yields for pi(+/-), K(+/-), p, and (p) over bar in p + p collisions at root s = 200 and 62.4 GeV at midrapidity are measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC). These data provide important baseline spectra for comparisons with identified particle spectra in heavy ion collisions at RHIC. We present the inverse slope parameter T(inv), mean transverse momentum < p(T)>, and yield per unit rapidity dN/dy at each energy, and compare them to other measurements at different root s in p + p and p + (p) over bar collisions. We also present the scaling properties such as m(T) scaling and x(T) scaling on the p(T) spectra between different energies. To discuss the mechanism of the particle production in p + p collisions, the measured spectra are compared to next-to-leading-order or next-to-leading-logarithmic perturbative quantum chromodynamics calculations.
Resumo:
We report a measurement of high-p(T) inclusive pi(0), eta, and direct photon production in p + p and d + Au collisions at root s(NN) = 200 GeV at midrapidity (0 < eta < 1). Photons from the decay pi(0) -> gamma gamma were detected in the barrel electromagnetic calorimeter of the STAR experiment at the Relativistic Heavy Ion Collider. The eta -> gamma gamma decay was also observed and constituted the first eta measurement by STAR. The first direct photon cross-section measurement by STAR is also presented; the signal was extracted statistically by subtracting the pi(0), eta, and omega(782) decay background from the inclusive photon distribution observed in the calorimeter. The analysis is described in detail, and the results are found to be in good agreement with earlier measurements and with next-to-leading-order perturbative QCD calculations.
Resumo:
We report a measurement of the longitudinal double-spin asymmetry A(LL) and the differential cross section for inclusive pi(0) production at midrapidity in polarized proton collisions at s=200 GeV. The cross section was measured over a transverse momentum range of 1 < p(T)< 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p(T)< 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of pi(0)'s in their parent jets was found to be around 0.7 for electromagnetically triggered events.
Resumo:
The objective of this work was to develop and validate a rapid Reversed-Phase High-Performance Liquid Chromatography method for the quantification of 3,5,3 '-triiodothyroacetic acid (TRIAC) in nanoparticles delivery system prepared in different polymeric matrices. Special attention was given to developing a reliable reproductive technique for the pretreatment of the samples. Chromatographic runs were performed on an Agilent 1200 Series HPLC with a RP Phenomenex (R) Gemini C18 (150 x 4, 6 mm i.d., 5 mu m) column using acetonitrile and triethylamine buffer 0.1% (TEA) (40 : 60 v/v) as a mobile phase in an isocratic elution, pH 5.6 at a flow rate of 1 ml min(-1). TRIAC was detected at a wavelength of 220 nm. The injection volume was 20 mu l and the column temperature was maintained at 35 degrees C. The validation characteristics included accuracy, precision, specificity, linearity, recovery, and robustness. The standard curve was found to have a linear relationship (r(2) - 0.9996) over the analytical range of 5-100 mu g ml(-1) . The detection and quantitation limits were 1.3 and 3.8 mu g ml(-1), respectively. The recovery and loaded TRIAC in colloidal system delivery was nearly 100% and 98%, respectively. The method was successfully applied in polycaprolactone, polyhydroxybutyrate, and polymethylmethacrylate nanoparticles.
Resumo:
Background: The protein kinase YakA is responsible for the growth arrest and induction of developmental processes that occur upon starvation of Dictyostelium cells. yakA-cells are aggregation deficient, have a faster cell cycle and are hypersensitive to oxidative and nitrosoative stress. With the aim of isolating members of the YakA pathway, suppressors of the death induced by nitrosoative stress in the yakA-cells were identified. One of the suppressor mutations occurred in keaA, a gene identical to DG1106 and similar to Keap1 from mice and the Kelch protein from Drosophila, among others that contain Kelch domains. Results: A mutation in keaA suppresses the hypersensitivity to oxidative and nitrosoative stresses but not the faster growth phenotype of yakA-cells. The growth profile of keaA deficient cells indicates that this gene is necessary for growth. keaA deficient cells are more resistant to nitrosoative and oxidative stress and keaA is necessary for the production and detection of cAMP. A morphological analysis of keaA deficient cells during multicellular development indicated that, although the mutant is not absolutely deficient in aggregation, cells do not efficiently participate in the process. Gene expression analysis using cDNA microarrays of wild-type and keaA deficient cells indicated a role for KeaA in the regulation of the cell cycle and pre-starvation responses. Conclusions: KeaA is required for cAMP signaling following stress. Our studies indicate a role for kelch proteins in the signaling that regulates the cell cycle and development in response to changes in the environmental conditions.
Resumo:
Background: NADPH-cytochrome- P450 oxidoreductase (CPR) is a ubiquitous enzyme that belongs to a family of diflavin oxidoreductases and is required for activity of the microsomal cytochrome-P450 monooxygenase system. CPR gene-disruption experiments have demonstrated that absence of this enzyme causes developmental defects both in mouse and insect. Results: Annotation of the sequenced genome of D. discoideum revealed the presence of three genes (redA, redB and redC) that encode putative members of the diflavin oxidoreductase protein family. redA transcripts are present during growth and early development but then decline, reaching undetectable levels after the mound stage. redB transcripts are present in the same levels during growth and development while redC expression was detected only in vegetative growing cells. We isolated a mutant strain of Dictyostelium discoideum following restriction enzyme-mediated integration (REMI) mutagenesis in which redA was disrupted. This mutant develops only to the mound stage and accumulates a bright yellow pigment. The mound-arrest phenotype is cell-autonomous suggesting that the defect occurs within the cells rather than in intercellular signaling. Conclusion: The developmental arrest due to disruption of redA implicates CPR in the metabolism of compounds that control cell differentiation.