906 resultados para Impure sets
Resumo:
This article introduces the recent sound works of Heidi Fast, a Finnish voice and performance artist. Fast’s creative practice operates between art and philosophy, and articulates several ‘zones of becoming’: what Fast designates as ‘the clinical’, ‘the virtual’ and ‘vocal thought-material’. Using a methodology of routing, the article shows how these zones emerge as aesthetic, ethical and political concerns within Fast’s work. Since 2005, Fast’s sound works have variously taken shape as miniature concerts, social sculptures, imaginary soundscapes and environmental music performances. Drawing upon the writings of theorists who have helped shape her practice, this article argues that Fast uses sound and voice to propose an ‘actualising philosophy’. This philosophy actualises virtualities (unrealised potentials), affecting transformative shifts through tiny mutations in perceptions and behaviours.
Resumo:
We construct a bounded linear operator on a separable, reflexive and strictly convex Banach space whose resolvent norm is constant in a neighbourhood of zero.
Resumo:
In the present paper, we introduce a notion of a style representing abstract, complex objects having characteristics that can be represented as structured objects. Furthermore, we provide some mathematical properties of such styles. As a main result, we present a novel approach to perform a meaningful comparative analysis of such styles by defining and using graph-theoretic measures. We compare two styles by comparing the underlying feature sets representing sets of graph structurally. To determine the structural similarity between the underlying graphs, we use graph similarity measures that are computationally efficient. More precisely, in order to compare styles, we map each feature set to a so-called median graph and compare the resulting median graphs. As an application, we perform an experimental study to compare special styles representing sets of undirected graphs and present numerical results thereof. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
From our linkage study of Irish families with a high density of schizophrenia, we have previously reported evidence for susceptibility genes in regions 5q21-31, 6p24-21, 8p22-21, and 10p15-p11. In this report, we describe the cumulative results from independent genome scans of three a priori random subsets of 90 families each, and from multipoint analysis of all 270 families in ten regions. Of these ten regions, three (13q32, 18p11-q11, and 18q22-23) did not generate scores above the empirical baseline pairwise scan results, and one (6q13-26) generated a weak signal. Six other regions produced more positive pairwise and multipoint results. They showed the following maximum multipoint H-LOD (heterogeneity LOD) and NPL scores: 2p14-13: 0.89 (P = 0.06) and 2.08 (P = 0.02), 4q24-32: 1.84 (P = 0.007) and 1.67 (P = 0.03), 5q21-31: 2.88 (P= 0.0007), and 2.65 (P = 0.002), 6p25-24: 2.13 (P = 0.005) and 3.59 (P = 0.0005), 6p23: 2.42 (P = 0.001) and 3.07 (P = 0.001), 8p22-21: 1.57 (P = 0.01) and 2.56 (P = 0.005), 10p15-11: 2.04 (P = 0.005) and 1.78 (P = 0.03). The degree of 'internal replication' across subsets differed, with 5q, 6p, and 8p being most consistent and 2p and 10p being least consistent. On 6p, the data suggested the presence of two susceptibility genes, in 6p25-24 and 6p23-22. Very few families were positive on more than one region, and little correlation between regions was evident, suggesting substantial locus heterogeneity. The levels of statistical significance were modest, as expected from loci contributing to complex traits. However, our internal replications, when considered along with the positive results obtained in multiple other samples, suggests that most of these six regions are likely to contain genes that influence liability to schizophrenia.
Resumo:
Motivation: To date, Gene Set Analysis (GSA) approaches primarily focus on identifying differentially expressed gene sets (pathways). Methods for identifying differentially coexpressed pathways also exist but are mostly based on aggregated pairwise correlations, or other pairwise measures of coexpression. Instead, we propose Gene Sets Net Correlations Analysis (GSNCA), a multivariate differential coexpression test that accounts for the complete correlation structure between genes.
Results: In GSNCA, weight factors are assigned to genes in proportion to the genes' cross-correlations (intergene correlations). The problem of finding the weight vectors is formulated as an eigenvector problem with a unique solution. GSNCA tests the null hypothesis that for a gene set there is no difference in the weight vectors of the genes between two conditions. In simulation studies and the analyses of experimental data, we demonstrate that GSNCA, indeed, captures changes in the structure of genes' cross-correlations rather than differences in the averaged pairwise correlations. Thus, GSNCA infers differences in coexpression networks, however, bypassing method-dependent steps of network inference. As an additional result from GSNCA, we define hub genes as genes with the largest weights and show that these genes correspond frequently to major and specific pathway regulators, as well as to genes that are most affected by the biological difference between two conditions. In summary, GSNCA is a new approach for the analysis of differentially coexpressed pathways that also evaluates the importance of the genes in the pathways, thus providing unique information that may result in the generation of novel biological hypotheses.