1000 resultados para Imagens fotográficas digitais intrabucais oclusais


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A indústria de madeira tem dispensado especial atenção às etapas de classificação e seleção de madeira serrada. Sistemas de Visão Artificial têm sido propostos para automação dessas etapas na indústria. A identificação de características apropriadas para discriminar os defeitos da madeira em imagens digitais é um dos maiores desafios no desenvolvimento desta tecnologia. O objetivo deste trabalho foi avaliar, por meio de técnicas de análise multivariada, a capacidade de discriminar defeitos em tábuas de eucalipto, utilizando-se as características de percentis de imagens coloridas. Foram realizadas análises discriminantes linear e quadrática para classificação de defeitos e madeira limpa em imagens digitais de tábuas de eucaliptos. As características de percentis do histograma das bandas do vermelho, verde e azul, retiradas de dois tamanhos de blocos de imagens, foram utilizadas para desenvolvimento e teste das funções discriminantes. Foram usados 492 blocos, contendo os 12 defeitos estudados e madeira limpa, retirados das imagens de 40 tábuas amostradas aleatoriamente. As características foram analisadas com seus valores originais, escores dos componentes principais e escores das variáveis canônicas. Os menores erros globais de classificação foram 19 e 24% para funções discriminantes lineares com os escores das variáveis canônicas para tamanho de bloco de 64 x 64 e 32 x 32 pixels, respectivamente. Tendo em vista a magnitude desses erros, as características de percentis foram consideradas adequadas para discriminar defeitos e madeira limpa em imagens digitais.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Este trabalho teve como objetivo avaliar o uso de índices espectrais, retirados de imagens digitais, para discriminar diferentes doses de N no feijoeiro. O trabalho, conduzido em vasos de 8 dm³, teve cinco tratamentos (0; 50; 100; 150 e 200 kg de N ha-1), com dez repetições. As imagens foram adquiridas aos 30; 40 e 50 dias após a emergência. Foram desenvolvidas funções discriminantes quadráticas, tendo como vetores de entrada as médias dos "pixels" de diferentes combinações dos quatro índices espectrais testados. Três diferentes tamanhos de blocos de imagem foram testados 9 x 9; 20 x 20 e 40 x 40 "pixels". Os melhores resultados foram alcançados pelos blocos de 9 x 9 e 20 x 20 "pixels", apresentando classificação 94; 96 e 96% superior à classificação ao acaso para os blocos 9 x 9 "pixels" e 92; 94 e 94% para os blocos 20x20 "pixels" aos 30; 40 e 50 dias após a emergência, respectivamente.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Com o objetivo de comparar dois classificadores de imagens para a estimativa da cobertura vegetal do solo, foram avaliadas as coberturas proporcionadas pela semeadura de leguminosas e de gramíneas, sob diferentes espaçamentos, preparo do solo e condições de céu com e sem nuvens. O experimento foi conduzido em quatro parcelas experimentais de perda de solo, com 22 m x 3,5 m, instaladas em um Argissolo Vermelho-Amarelo. Os tratamentos consistiram: a) mucuna-cinza (Mucuna pruriens) em nível; b) crotalária (Crotalaria juncea) em sulcos dispostos em nível; c) milho (Zea mays L.) em sulcos dispostos em nível, e d) milho semeado no sentido do declive. Foram tomadas fotografias das parcelas dos 15 aos 85 dias após a semeadura para posterior análise, utilizando o Sistema Integrado para Análise de Raízes e Cobertura do Solo (SIARCS) e um algoritmo baseado na emissividade das bandas do verde e do vermelho (SEROBIN). A maior cobertura do solo foi obtida na parcela cultivada com crotálaria (85,8%), a qual também foi alcançada em menor tempo (56 dias após semeadura). Por outro lado, as menores coberturas foram proporcionadas pelos tratamentos milho em nível e milho morro abaixo (38,6 e 35,2%, respectivamente). As exatidões globais foram de 0,96 e 0,92, para as classificações realizadas com os programas SIARCS e SEROBIN, respectivamente, não havendo, no entanto, diferença estatística entre os dois classificadores utilizados, de acordo com o teste Z aplicado, a 5% de probabilidade.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neste trabalho, foi aplicado o processamento de imagens digitais auxiliado pelas Redes Neurais Artificiais (RNA) com a finalidade de identificar algumas variedades de soja por meio da forma e do tamanho das sementes. Foram analisadas as seguintes variedades: EMBRAPA 133, EMBRAPA 184, COODETEC 205, COODETEC 206, EMBRAPA 48, SYNGENTA 8350, FEPAGRO 10 e MONSOY 8000 RR, safra 2005/2006. O processamento das imagens foi constituído pelas seguintes etapas: 1) Aquisição da imagem: as amostras de cada variedade foram fotografadas por máquina fotográfica Coolpix995, Nikon, com resolução de 3.34 megapixels; 2) Pré-processamento: um filtro de anti-aliasing foi aplicado para obter tons acinzentados da imagem; 3) Segmentação: foi realizada a detecção das bordas das sementes (Método de Prewitt), dilatação dessas bordas e remoção de segmentos não-necessários para a análise. 4) Representação: cada semente foi representada na forma de matriz binária 130x130, e 5) Reconhecimento e interpretação: foi utilizada uma rede neural feedforward multicamadas, com três camadas ocultas. O treinamento da rede foi realizado pelo método backpropagation. A validação da RNA treinada mostrou que o processamento aplicado pode ser usado para a identificação das variedades consideradas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Na busca por respostas quanto às condições de bem-estar animal, visou-se a avaliar neste trabalho o comportamento de pintainhos nas duas primeiras semanas de vida, por meio de processamento de imagens digitais. O experimento foi realizado em dois galpões comerciais, utilizados para criação de 15.200 aves de corte por galpão, durante um ciclo produtivo, dotados com fornalha a lenha de aquecimento indireto do ar. Foram instaladas duas câmeras de vídeo por galpão para aquisição de imagens digitais. Uma das câmeras possuía inclinação angular de 45º, e a outra, inclinação angular de 90º em relação ao solo. As imagens foram analisadas para cada condição climática diária e binarizadas, sendo depois processadas por meio de descritor de agrupamento/dispersão e correlacionadas com os valores de temperatura do ar. Observou-se correlação entre o descritor e os valores de temperatura do ar, sendo que as imagens obtidas pela câmera posicionada a 45º e divididas em 25 blocos, obtiveram maior correlação. Pelos dados obtidos, pode-se observar que o comportamento de agrupamento e dispersão dos pintainhos pode ser usado como indicador dos estados de conforto térmico e que o descritor se mostrou eficiente para esta quantificação.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A análise de imagens digitais tem grande potencial de uso na determinação do vigor de sementes. Associada ao teste de crescimento de plântulas, essa técnica possibilita a análise dimensional de imagens com rapidez e precisão. O resultado é a extensão total de cada plântula via quantificação computadorizada do comprimento de suas partes constituintes. Assim, o objetivo do trabalho foi estudar o vigor de lotes de sementes de milho, por meio do teste de crescimento de plântulas, utilizando-se a análise de imagens. Plântulas de milho (genótipo AG122) foram retiradas do germinador ao quarto dia de desenvolvimento e ordenadas sobre uma folha de poliéster transparente na superfície de um "scanner" para a captação das imagens. Desenvolveu-se uma rotina de processamento no programa "Scil-Image" para a análise das imagens digitais obtidas das plântulas. Houve medição computadorizada da extensão total, com a soma do comprimento do coleóptilo ao comprimento da maior raiz da plântula e, também ao tamanho de todo sistema radicular. As plântulas foram mensuradas manualmente, visando a comparação com o método em estudo. Com os resultados verificou-se que a técnica digital possibilita a associação dos dados obtidos no processamento a eventuais diferenças de vigor existentes em lotes de sementes de milho, de maneira similar a outros métodos destinados à avaliação do vigor de sementes da referida espécie.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Com o objetivo de observar o crescimento inicial de feijão, utilizando a avaliação de plântulas por meio de imagens digitais, processadas pelo programa Sigma Scan Pro v. 5.0 e pelo método tradicional de laboratório, foi conduzido o experimento avaliando a influência da temperatura, das cultivares e de diferentes lotes de sementes de feijão (Phaseolus vulgaris L.). O experimento foi conduzido em câmaras climatizadas no Laboratório Didático e de Pesquisas em Sementes do Departamento de Fitotecnia - UFSM, onde foram utilizadas as temperaturas constantes de 10, 15, 20, 25 e 30º C, as cultivares Valente e Uirapuru e quatro lotes com diferentes níveis de qualidade fisiológica, obtidos por meio de envelhecimento acelerado durante períodos de zero, 12, 24 e 36 horas (41º C e 100% de UR do ar). A captação de imagens ocorreu concomitantemente à avaliação visual do crescimento das plântulas, utilizando câmera digital (Sony® 3.2 mp). O delineamento experimental utilizado foi inteiramente ao acaso, com quatro repetições e 10 amostras. Os testes realizados foram: comprimento do hipocótilo e da raiz primária de plântulas normais, por meio do método tradicional e da coleta de imagens digitais das mesmas plantas. A partir dos resultados pode-se considerar que as avaliações de crescimento das plântulas por meio da análise de imagens digitais e pelo procedimento tradicional apresentam resultados semelhantes e são eficientes para a avaliação do vigor de sementes de feijão.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

No processo de classificação de uma imagem digital, o atributo textura pode ser uma fonte importante de informações. Embora o processo de caracterização da textura em uma imagem seja mais difícil, se comparado ao processo de caracterização de atributos espectrais, sabe-se que o emprego daquele atributo pode aumentar significativamente a exatidão na classificação da imagem. O objetivo deste trabalho de pesquisa consiste em desenvolver e testar um método de classificação supervisionado em imagens digitais com base em atributos de textura. O método proposto implementa um processo de filtragem baseado nos filtros de Gabor. Inicialmente, é gerado um conjunto de filtros de Gabor adequados às freqüências espaciais associadas às diferentes classes presentes na imagem a ser classificada. Em cada caso, os parâmetros utilizados por cada filtro são estimados a partir das amostras disponíveis, empregando-se a transformada de Fourier. Cada filtro gera, então, uma imagem filtrada que quantifica a freqüência espacial definida no filtro. Este processo resulta em um certo número de imagens filtradas as quais são denominadas de "bandas texturais". Desta forma, o problema que era originalmente unidimensional passa a ser multi-dimensional, em que cada pixel passa a ser definido por um vetor cuja dimensionalidade é idêntica ao número de filtros utilizados. A imagem em várias "bandas texturais" pode ser classificada utilizando-se um método de classificação supervisionada. No presente trabalho foi utilizada a Máxima Verossimilhança Gaussiana. A metodologia proposta é então testada, utilizandose imagens sintéticas e real. Os resultados obtidos são apresentados e analisados.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

O desenvolvimento de novos, e mais eficientes, métodos de classificação de imagem digitais em Sensoriamento Remoto se constitui em uma importante área que tem chamado a atenção de muitos pesquisadores. Nesta área em particular, um problema que freqüentemente surge para a classificação de imagens digitais provenientes de cenas naturais, é a ocorrência de classes espectrais com resposta espectral muito similar. Nestes casos, os sistemas sensores mais comuns e os métodos tradicionais de classificação de imagem apresentam muito baixa precisão ou mesmo falham completamente. Várias abordagens vem sendo propostas na literatura. Uma das possíveis abordagens consiste em fazer uso de informações auxiliares que possuam poder discriminante para as classes sob análise. Esta é a possibilidade explorada nesta dissertação, utilizar-se de dados auxiliares, provenientes de fontes diversas, tais como: temperatura, precipitação, altitude e classes de solo. Estes dados são então combinados com dados provenientes de imagens multiespectrais de acordo com a Teoria de Evidência proposta por Dempster e Shafer. Esta abordagem é testada usando dados de uma área no Estado do Rio Grande do Sul, Brasil, com a finalidade de delimitar a ocorrência da Mata Nativa com Araucária (composta pela conifera Araucaria angustifolia), que é de difícil separação em relação a outras classes espectrais que ocorrem na região, tornando difícil o processo preciso de classificação.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Em cenas naturais, ocorrem com certa freqüência classes espectralmente muito similares, isto é, os vetores média são muito próximos. Em situações como esta, dados de baixa dimensionalidade (LandSat-TM, Spot) não permitem uma classificação acurada da cena. Por outro lado, sabe-se que dados em alta dimensionalidade [FUK 90] tornam possível a separação destas classes, desde que as matrizes covariância sejam suficientemente distintas. Neste caso, o problema de natureza prática que surge é o da estimação dos parâmetros que caracterizam a distribuição de cada classe. Na medida em que a dimensionalidade dos dados cresce, aumenta o número de parâmetros a serem estimados, especialmente na matriz covariância. Contudo, é sabido que, no mundo real, a quantidade de amostras de treinamento disponíveis, é freqüentemente muito limitada, ocasionando problemas na estimação dos parâmetros necessários ao classificador, degradando portanto a acurácia do processo de classificação, na medida em que a dimensionalidade dos dados aumenta. O Efeito de Hughes, como é chamado este fenômeno, já é bem conhecido no meio científico, e estudos vêm sendo realizados com o objetivo de mitigar este efeito. Entre as alternativas propostas com a finalidade de mitigar o Efeito de Hughes, encontram-se as técnicas de regularização da matriz covariância. Deste modo, técnicas de regularização para a estimação da matriz covariância das classes, tornam-se um tópico interessante de estudo, bem como o comportamento destas técnicas em ambientes de dados de imagens digitais de alta dimensionalidade em sensoriamento remoto, como por exemplo, os dados fornecidos pelo sensor AVIRIS. Neste estudo, é feita uma contextualização em sensoriamento remoto, descrito o sistema sensor AVIRIS, os princípios da análise discriminante linear (LDA), quadrática (QDA) e regularizada (RDA) são apresentados, bem como os experimentos práticos dos métodos, usando dados reais do sensor. Os resultados mostram que, com um número limitado de amostras de treinamento, as técnicas de regularização da matriz covariância foram eficientes em reduzir o Efeito de Hughes. Quanto à acurácia, em alguns casos o modelo quadrático continua sendo o melhor, apesar do Efeito de Hughes, e em outros casos o método de regularização é superior, além de suavizar este efeito. Esta dissertação está organizada da seguinte maneira: No primeiro capítulo é feita uma introdução aos temas: sensoriamento remoto (radiação eletromagnética, espectro eletromagnético, bandas espectrais, assinatura espectral), são também descritos os conceitos, funcionamento do sensor hiperespectral AVIRIS, e os conceitos básicos de reconhecimento de padrões e da abordagem estatística. No segundo capítulo, é feita uma revisão bibliográfica sobre os problemas associados à dimensionalidade dos dados, à descrição das técnicas paramétricas citadas anteriormente, aos métodos de QDA, LDA e RDA, e testes realizados com outros tipos de dados e seus resultados.O terceiro capítulo versa sobre a metodologia que será utilizada nos dados hiperespectrais disponíveis. O quarto capítulo apresenta os testes e experimentos da Análise Discriminante Regularizada (RDA) em imagens hiperespectrais obtidos pelo sensor AVIRIS. No quinto capítulo são apresentados as conclusões e análise final. A contribuição científica deste estudo, relaciona-se à utilização de métodos de regularização da matriz covariância, originalmente propostos por Friedman [FRI 89] para classificação de dados em alta dimensionalidade (dados sintéticos, dados de enologia), para o caso especifico de dados de sensoriamento remoto em alta dimensionalidade (imagens hiperespectrais). A conclusão principal desta dissertação é que o método RDA é útil no processo de classificação de imagens com dados em alta dimensionalidade e classes com características espectrais muito próximas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A tradicional técnica de regressão logística, muito conhecida e utilizada em estudos médicos, permitia apenas a modelagem de variáveis-resposta binárias. A extensão do modelo logístico para variáveis-resposta multinominais ampliou em muito as áreas de aplicação de regressão logística. Na área de reconhecimento de padrões o modelo logístico multinominal recebeu a denominação de discriminação logística apresenta aparentes vantagens em relação a métodos convencionais de classificação. O método da máxima verossimilhança gaussiana, amplamente difundido e utilizado, necessita da estimação de um número muito grande de parâmetros, pois supõe que as distribuições subjacentes de cada classe sejam normais multivariadas. A discriminação logística por sua vez, não faz restrições quanto a forma funcional das variáveis, e o número de parâmetros do modelo é relativamente pequeno. Nesse estudo, os princípios da técnica de discriminação logística são apresentados detalhadamente, bem como aplicações práticas de classificação de imagens Landsat-TM e AVIRIS. Os procedimentos de discriminação logística e da máxima verossimilhança gaussiana foram comparados a partir de dados reais e simulados. Os resultados sugerem que a discriminação logística seja considerada como uma alternativa ao método da máximaverossimilhança gaussiana, principalmente quando os dados apresentarem desvios da normalidade.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Com o advento dos sensores hiperespectrais se tornou possível em sensoriamento remoto, uma serie de diferentes aplicações. Uma delas, é a possibilidade de se discriminar classes com comportamentos espectrais quase idênticas. Porém um dos principais problemas encontrados quando se trabalha com dados de alta dimensionalidade, é a dificuldade em estimar os inúmeros parâmetros que se fazem necessários. Em situações reais é comum não se ter disponibilidade de tamanho de amostra suficiente, por exemplo, para se estimar a matriz de covariâncias de forma confiável. O sensor AVIRIS fornece uma riqueza de informações sobre os alvos, são 224 bandas cobrindo o espectro eletromagnético, o que permite a observação do comportamento espectral dos alvos de forma muito detalhada. No entanto surge a dificuldade de se contar com uma amostra suficiente para se estimar a matriz de covariâncias de uma determinada classe quando trabalhamos com dados do sensor AVIRIS, para se ter uma idéia é preciso estimar 25.200 parâmetros somente na matriz de covariâncias, o que necessitaria de uma amostra praticamente impraticável na realidade. Surge então a necessidade de se buscar formas de redução da dimensionalidade, sem que haja perda significativa de informação. Esse tipo de problema vem sendo alvo de inúmeros estudos na comunidade acadêmica internacional. Em nosso trabalho pretendemos sugerir a redução da dimensionalidade através do uso de uma ferramenta da geoestatística denominada semivariograma. Investigaremos se os parâmetros calculados para determinadas partições do transecto de bandas do sensor AVIRIS são capazes de gerar valores médios distintos para classes com comportamentos espectrais muito semelhantes, o que por sua vez, facilitaria a classificação/discriminação destas classes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)