685 resultados para Image smoothing
Resumo:
In this thesis a semi-automated cell analysis system is described through image processing. To achieve this, an image processing algorithm was studied in order to segment cells in a semi-automatic way. The main goal of this analysis is to increase the performance of cell image segmentation process, without affecting the results in a significant way. Even though, a totally manual system has the ability of producing the best results, it has the disadvantage of taking too long and being repetitive, when a large number of images need to be processed. An active contour algorithm was tested in a sequence of images taken by a microscope. This algorithm, more commonly known as snakes, allowed the user to define an initial region in which the cell was incorporated. Then, the algorithm would run several times, making the initial region contours to converge to the cell boundaries. With the final contour, it was possible to extract region properties and produce statistical data. This data allowed to say that this algorithm produces similar results to a purely manual system but at a faster rate. On the other hand, it is slower than a purely automatic way but it allows the user to adjust the contour, making it more versatile and tolerant to image variations.
Resumo:
Breast cancer is the most common cancer among women, being a major public health problem. Worldwide, X-ray mammography is the current gold-standard for medical imaging of breast cancer. However, it has associated some well-known limitations. The false-negative rates, up to 66% in symptomatic women, and the false-positive rates, up to 60%, are a continued source of concern and debate. These drawbacks prompt the development of other imaging techniques for breast cancer detection, in which Digital Breast Tomosynthesis (DBT) is included. DBT is a 3D radiographic technique that reduces the obscuring effect of tissue overlap and appears to address both issues of false-negative and false-positive rates. The 3D images in DBT are only achieved through image reconstruction methods. These methods play an important role in a clinical setting since there is a need to implement a reconstruction process that is both accurate and fast. This dissertation deals with the optimization of iterative algorithms, with parallel computing through an implementation on Graphics Processing Units (GPUs) to make the 3D reconstruction faster using Compute Unified Device Architecture (CUDA). Iterative algorithms have shown to produce the highest quality DBT images, but since they are computationally intensive, their clinical use is currently rejected. These algorithms have the potential to reduce patient dose in DBT scans. A method of integrating CUDA in Interactive Data Language (IDL) is proposed in order to accelerate the DBT image reconstructions. This method has never been attempted before for DBT. In this work the system matrix calculation, the most computationally expensive part of iterative algorithms, is accelerated. A speedup of 1.6 is achieved proving the fact that GPUs can accelerate the IDL implementation.
Resumo:
Since the invention of photography humans have been using images to capture, store and analyse the act that they are interested in. With the developments in this field, assisted by better computers, it is possible to use image processing technology as an accurate method of analysis and measurement. Image processing's principal qualities are flexibility, adaptability and the ability to easily and quickly process a large amount of information. Successful examples of applications can be seen in several areas of human life, such as biomedical, industry, surveillance, military and mapping. This is so true that there are several Nobel prizes related to imaging. The accurate measurement of deformations, displacements, strain fields and surface defects are challenging in many material tests in Civil Engineering because traditionally these measurements require complex and expensive equipment, plus time consuming calibration. Image processing can be an inexpensive and effective tool for load displacement measurements. Using an adequate image acquisition system and taking advantage of the computation power of modern computers it is possible to accurately measure very small displacements with high precision. On the market there are already several commercial software packages. However they are commercialized at high cost. In this work block-matching algorithms will be used in order to compare the results from image processing with the data obtained with physical transducers during laboratory load tests. In order to test the proposed solutions several load tests were carried out in partnership with researchers from the Civil Engineering Department at Universidade Nova de Lisboa (UNL).
Resumo:
The mobile IT era is here, it is still growing and expanding at a steady rate and, most of all, it is entertaining. Mobile devices are used for entertainment, whether social through the so-called social networks, or private through web browsing, video watching or gaming. Youngsters make heavy use of these devices, and even small children show impressive adaptability and skill. However not much attention is directed towards education, especially in the case of young children. Too much time is usually spent in games which only purpose is to keep children entertained, time that could be put to better use such as developing elementary geometric notions. Taking advantage of this pocket computer scenario, it is proposed an application geared towards small children in the 6 – 9 age group that allows them to consolidate knowledge regarding geometric shapes, forming a stepping stone that leads to some fundamental mathematical knowledge to be exercised later on. To achieve this goal, the application will detect simple geometric shapes like squares, circles and triangles using the device’s camera. The novelty of this application will be a core real-time detection system designed and developed from the ground up for mobile devices, taking into account their characteristic limitations such as reduced processing power, memory and battery. User feedback was be gathered, aggregated and studied to assess the educational factor of the application.
Resumo:
Les yeux et les masques sont prévalents dans les oeuvres du peintre chinois contemporain Zeng Fanzhi (né en 1964), comme métaphore du jeu de pouvoir qui oppose les individus à l’appareil social et politique. Son oeuvre La Cène, d’après Leonard de Vinci, est un exemple frappant de cette préoccupation. Cet essai examine l’utilisation par l’artiste de cette représentation occidentale d’une crise morale (une trahison qui mène à la mort du Christ) pour exprimer la dystopie qui marque la Chine contemporaine. L’interprétation par Zeng de l’oeuvre de Vinci témoigne d’une compréhension profonde de sa signification à la Renaissance comme conflit entre le pouvoir terrestre et spirituel, auquel il surimpose la fonction du banquet dans la culture chinoise comme lieu de lutte politique. Un nihilisme détaché imprègne ce travail, à l’instar de l’interprétation métaphorique du banquet de Platon par Søren Kierkegaard, In Vino Veritas.
Resumo:
Hand gesture recognition for human computer interaction, being a natural way of human computer interaction, is an area of active research in computer vision and machine learning. This is an area with many different possible applications, giving users a simpler and more natural way to communicate with robots/systems interfaces, without the need for extra devices. So, the primary goal of gesture recognition research is to create systems, which can identify specific human gestures and use them to convey information or for device control. For that, vision-based hand gesture interfaces require fast and extremely robust hand detection, and gesture recognition in real time. In this study we try to identify hand features that, isolated, respond better in various situations in human-computer interaction. The extracted features are used to train a set of classifiers with the help of RapidMiner in order to find the best learner. A dataset with our own gesture vocabulary consisted of 10 gestures, recorded from 20 users was created for later processing. Experimental results show that the radial signature and the centroid distance are the features that when used separately obtain better results, with an accuracy of 91% and 90,1% respectively obtained with a Neural Network classifier. These to methods have also the advantage of being simple in terms of computational complexity, which make them good candidates for real-time hand gesture recognition.
Resumo:
Yarrowia lipolytica, a yeast strain with a huge biotechnological potential, capable to produce metabolites such as γ-decalactone, citric acid, intracellular lipids and enzymes, possesses the ability to change its morphology in response to environmental conditions. In the present study, a quantitative image analysis (QIA) procedure was developed for the identification and quantification of Y. lipolytica W29 and MTLY40-2P strains dimorphic growth, cultivated in batch cultures on hydrophilic (glucose and N-acetylglucosamine (GlcNAc) and hydrophobic (olive oil and castor oil) media. The morphological characterization of yeast cells by QIA techniques revealed that hydrophobic carbon sources, namely castor oil, should be preferred for both strains growth in the yeast single cell morphotype. On the other hand, hydrophilic sugars, namely glucose and GlcNAc caused a dimorphic transition growth towards the hyphae morphotype. Experiments for γ-decalactone production with MTLY40-2P strain in two distinct morphotypes (yeast single cells and hyphae cells) were also performed. The obtained results showed the adequacy of the proposed morphology monitoring tool in relation to each morphotype on the aroma production ability. The present work allowed establishing that QIA techniques can be a valuable tool for the identification of the best culture conditions for industrial processes implementation.
Resumo:
Many texture measures have been developed and used for improving land-cover classification accuracy, but rarely has research examined the role of textures in improving the performance of aboveground biomass estimations. The relationship between texture and biomass is poorly understood. This paper used Landsat Thematic Mapper (TM) data to explore relationships between TM image textures and aboveground biomass in Rondônia, Brazilian Amazon. Eight grey level co-occurrence matrix (GLCM) based texture measures (i.e., mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, and correlation), associated with seven different window sizes (5x5, 7x7, 9x9, 11x11, 15x15, 19x19, and 25x25), and five TM bands (TM 2, 3, 4, 5, and 7) were analyzed. Pearson's correlation coefficient was used to analyze texture and biomass relationships. This research indicates that most textures are weakly correlated with successional vegetation biomass, but some textures are significantly correlated with mature forest biomass. In contrast, TM spectral signatures are significantly correlated with successional vegetation biomass, but weakly correlated with mature forest biomass. Our findings imply that textures may be critical in improving mature forest biomass estimation, but relatively less important for successional vegetation biomass estimation.
Resumo:
Given the limitations of different types of remote sensing images, automated land-cover classifications of the Amazon várzea may yield poor accuracy indexes. One way to improve accuracy is through the combination of images from different sensors, by either image fusion or multi-sensor classifications. Therefore, the objective of this study was to determine which classification method is more efficient in improving land cover classification accuracies for the Amazon várzea and similar wetland environments - (a) synthetically fused optical and SAR images or (b) multi-sensor classification of paired SAR and optical images. Land cover classifications based on images from a single sensor (Landsat TM or Radarsat-2) are compared with multi-sensor and image fusion classifications. Object-based image analyses (OBIA) and the J.48 data-mining algorithm were used for automated classification, and classification accuracies were assessed using the kappa index of agreement and the recently proposed allocation and quantity disagreement measures. Overall, optical-based classifications had better accuracy than SAR-based classifications. Once both datasets were combined using the multi-sensor approach, there was a 2% decrease in allocation disagreement, as the method was able to overcome part of the limitations present in both images. Accuracy decreased when image fusion methods were used, however. We therefore concluded that the multi-sensor classification method is more appropriate for classifying land cover in the Amazon várzea.
Resumo:
OBJECTIVE: To characterize eating habits and possible risk factors associated with eating disorders among psychology students, a segment at risk for eating disorders. METHOD: This is a cross-sectional study. The questionnaires Bulimic Investigatory Test Edinburgh (BITE), Eating Attitudes Test (EAT-26), Body Shape Questionnaire (BSQ) and a variety that considers related issues were applied. Statistical Package for the Social Sciences (SPSS) 11.0 was utilized in analysis. The study population was composed of 175 female students, with a mean age of 21.2 (DP ± 3.6 years). RESULTS: A positive result was detected on the EAT-26 for 6.9% of the cases (CI95%: 3.6-11.7%). The prevalence of increased symptoms and intense gravity, according to the BITE questionnaire was 5% (CI95%: 2.4-9.5%) and 2.5% (CI95%: 0.7-6.3%), respectively. According to the findings, 26.29% of the students presented abnormal eating behavior. The population with moderate/severe BSQ scores presented dissatisfaction with corporal weight. CONCLUSION: The results indicate that attention must be given to eating behavior risks within this group. A differentiated gaze is justified with respect to these future professionals, whose practice is jeopardized in cases in which they are themselves the bearers of installed symptoms or precursory behavior.
Resumo:
Objective: To evaluate body image dissatisfaction and its relationship with physical activity and body mass index in a Brazilian sample of adolescents. Methods: A total of 275 adolescents (139 boys and 136 girls) between the ages of 14 and 18 years completed measures of body image dissatisfaction through the Contour Drawing Scale and current physical activity by the International Physical Activity Questionnaire. Weight and height were also measured for subsequent calculation of body mass index. Results: Boys and girls differed significantly regarding body image dissatisfaction, with girls reporting higher levels of dissatisfaction. Underweight and eutrophic boys preferred to be heavier, while those overweight preferred be thinner and, in contrast, girls desired to be thinner even when they are of normal weight. Conclusion: Body image dissatisfaction was strictly related to body mass index, but not to physical activity.
Resumo:
As digital imaging processing techniques become increasingly used in a broad range of consumer applications, the critical need to evaluate algorithm performance has become recognised by developers as an area of vital importance. With digital image processing algorithms now playing a greater role in security and protection applications, it is of crucial importance that we are able to empirically study their performance. Apart from the field of biometrics little emphasis has been put on algorithm performance evaluation until now and where evaluation has taken place, it has been carried out in a somewhat cumbersome and unsystematic fashion, without any standardised approach. This paper presents a comprehensive testing methodology and framework aimed towards automating the evaluation of image processing algorithms. Ultimately, the test framework aims to shorten the algorithm development life cycle by helping to identify algorithm performance problems quickly and more efficiently.
Resumo:
Visualistics, computer science, picture syntax, picture semantics, picture pragmatics, interactive pictures
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2009