955 resultados para Image analysis toolbox
Resumo:
The use of remote sensing for monitoring of submerged aquatic vegetation (SAV) in fluvial environments has been limited by the spatial and spectral resolution of available image data. The absorption of light in water also complicates the use of common image analysis methods. This paper presents the results of a study that uses very high resolution (VHR) image data, collected with a Near Infrared sensitive DSLR camera, to map the distribution of SAV species for three sites along the Desselse Nete, a lowland river in Flanders, Belgium. Plant species, including Ranunculus aquatilis L., Callitriche obtusangula Le Gall, Potamogeton natans L., Sparganium emersum L. and Potamogeton crispus L., were classified from the data using Object-Based Image Analysis (OBIA) and expert knowledge. A classification rule set based on a combination of both spectral and structural image variation (e.g. texture and shape) was developed for images from two sites. A comparison of the classifications with manually delineated ground truth maps resulted for both sites in 61% overall accuracy. Application of the rule set to a third validation image, resulted in 53% overall accuracy. These consistent results show promise for species level mapping in such biodiverse environments, but also prompt a discussion on assessment of classification accuracy.
Resumo:
Image processing offers unparalleled potential for traffic monitoring and control. For many years engineers have attempted to perfect the art of automatic data abstraction from sequences of video images. This paper outlines a research project undertaken at Napier University by the authors in the field of image processing for automatic traffic analysis. A software based system implementing TRIP algorithms to count cars and measure vehicle speed has been developed by members of the Transport Engineering Research Unit (TERU) at the University. The TRIP algorithm has been ported and evaluated on an IBM PC platform with a view to hardware implementation of the pre-processing routines required for vehicle detection. Results show that a software based traffic counting system is realisable for single window processing. Due to the high volume of data required to be processed for full frames or multiple lanes, system operations in real time are limited. Therefore specific hardware is required to be designed. The paper outlines a hardware design for implementation of inter-frame and background differencing, background updating and shadow removal techniques. Preliminary results showing the processing time and counting accuracy for the routines implemented in software are presented and a real time hardware pre-processing architecture is described.
Resumo:
A two-step etching technique for fine-grained calcite mylonites using 0.37% hydrochloric and 0.1% acetic acid produces a topographic relief which reflects the grain boundary geometry. With this technique, calcite grain boundaries become more intensely dissolved than their grain interiors but second phase minerals like dolomite, quartz, feldspars, apatite, hematite and pyrite are not affected by the acid and therefore form topographic peaks. Based on digital backscatter electron images and element distribution maps acquired on a scanning electron microscope, the geometry of calcite and the second phase minerals can be automatically quantified using image analysis software. For research on fine-grained carbonate rocks (e.g. dolomite calcite mixtures), this low-cost approach is an attractive alternative to the generation of manual grain boundary maps based on photographs from ultra-thin sections or orientation contrast images.
Resumo:
Biomedicine is a highly interdisciplinary research area at the interface of sciences, anatomy, physiology, and medicine. In the last decade, biomedical studies have been greatly enhanced by the introduction of new technologies and techniques for automated quantitative imaging, thus considerably advancing the possibility to investigate biological phenomena through image analysis. However, the effectiveness of this interdisciplinary approach is bounded by the limited knowledge that a biologist and a computer scientist, by professional training, have of each other’s fields. The possible solution to make up for both these lacks lies in training biologists to make them interdisciplinary researchers able to develop dedicated image processing and analysis tools by exploiting a content-aware approach. The aim of this Thesis is to show the effectiveness of a content-aware approach to automated quantitative imaging, by its application to different biomedical studies, with the secondary desirable purpose of motivating researchers to invest in interdisciplinarity. Such content-aware approach has been applied firstly to the phenomization of tumour cell response to stress by confocal fluorescent imaging, and secondly, to the texture analysis of trabecular bone microarchitecture in micro-CT scans. Third, this approach served the characterization of new 3-D multicellular spheroids of human stem cells, and the investigation of the role of the Nogo-A protein in tooth innervation. Finally, the content-aware approach also prompted to the development of two novel methods for local image analysis and colocalization quantification. In conclusion, the content-aware approach has proved its benefit through building new approaches that have improved the quality of image analysis, strengthening the statistical significance to allow unveiling biological phenomena. Hopefully, this Thesis will contribute to inspire researchers to striving hard for pursuing interdisciplinarity.
Resumo:
Multidimensional Visualization techniques are invaluable tools for analysis of structured and unstructured data with variable dimensionality. This paper introduces PEx-Image-Projection Explorer for Images-a tool aimed at supporting analysis of image collections. The tool supports a methodology that employs interactive visualizations to aid user-driven feature detection and classification tasks, thus offering improved analysis and exploration capabilities. The visual mappings employ similarity-based multidimensional projections and point placement to layout the data on a plane for visual exploration. In addition to its application to image databases, we also illustrate how the proposed approach can be successfully employed in simultaneous analysis of different data types, such as text and images, offering a common visual representation for data expressed in different modalities.
Resumo:
Texture is one of the most important visual attributes used in image analysis. It is used in many content-based image retrieval systems, where it allows the identification of a larger number of images from distinct origins. This paper presents a novel approach for image analysis and retrieval based on complexity analysis. The approach consists of a texture segmentation step, performed by complexity analysis through BoxCounting fractal dimension, followed by the estimation of complexity of each computed region by multiscale fractal dimension. Experiments have been performed with MRI database in both pattern recognition and image retrieval contexts. Results show the accuracy of the method and also indicate how the performance changes as the texture segmentation process is altered.
Resumo:
A set of NIH Image macro programs was developed to make qualitative and quantitative analyses from digital stereo pictures produced by scanning electron microscopes. These tools were designed for image alignment, anaglyph representation, animation, reconstruction of true elevation surfaces, reconstruction of elevation profiles, true-scale elevation mapping and, for the quantitative approach, surface area and roughness calculations. Limitations on time processing, scanning techniques and programming concepts are also discussed.
Resumo:
Photodynamic therapy (PDT) is a treatment modality that has advanced rapidly in recent years. It causes tissue and vascular damage with the interaction of a photosensitizing agent (PS), light of a proper wavelength, and molecular oxygen. Evaluation of vessel damage usually relies on histopathology evaluation. Results are often qualitative or at best semi-quantitative based on a subjective system. The aim of this study was to evaluate, using CD31 immunohistochem- istry and image analysis software, the vascular damage after PDT in a well-established rodent model of chemically induced mammary tumor. Fourteen Sprague-Dawley rats received a single dose of 7,12-dimethylbenz(a)anthraxcene (80 mg/kg by gavage), treatment efficacy was evaluated by comparing the vascular density of tumors after treatment with Photogem® as a PS, intraperitoneally, followed by interstitial fiber optic lighting, from a diode laser, at 200 mW/cm and light dose of 100 J/cm directed against his tumor (7 animals), with a control group (6 animals, no PDT). The animals were euthanized 30 hours after the lighting and mammary tumors were removed and samples from each lesion were formalin-fixed. Immunostained blood vessels were quantified by Image Pro-Plus version 7.0. The control group had an average of 3368.6 ± 4027.1 pixels per picture and the treated group had an average of 779 ± 1242.6 pixels per area (P < 0.01), indicating that PDT caused a significant decrease in vascular density of mammary tumors. The combined immu- nohistochemistry using CD31, with selection of representative areas by a trained pathology, followed by quantification of staining using Image Pro-Plus version 7.0 system was a practical and robust methodology for vessel damage evalua- tion, which probably could be used to assess other antiangiogenic treatments.
Resumo:
Analisi strutturale dell’ala di un UAV (velivolo senza pilota a bordo), sviluppata usando varie metodologie: misurazioni sperimentali statiche e dinamiche, e simulazioni numeriche con l’utilizzo di programmi agli elementi finiti. L’analisi statica è stata a sua volta portata avanti seguendo due differenti metodi: la classica e diretta determinazione degli spostamenti mediante l’utilizzo di un catetometro e un metodo visivo, basato sull’elaborazione di immagini e sviluppato appositamente a tale scopo in ambiente Matlab. Oltre a ciò è stata svolta anche una analisi FEM volta a valutare l’errore che si ottiene affrontando il problema con uno studio numerico. Su tale modello FEM è stata svolta anche una analisi di tipo dinamico con lo scopo di confrontare tali dati con i dati derivanti da un test dinamico sperimentale per ottenere informazioni utili per una seguente possibile analisi aeroelastica.
Resumo:
To analyze the impact of opacities in the optical pathway and image compression of 32-bit raw data to 8-bit jpg images on quantified optical coherence tomography (OCT) image analysis.
Resumo:
Matlab, uno de los paquetes de software matemático más utilizados actualmente en el mundo de la docencia y de la investigación, dispone de entre sus muchas herramientas una específica para el procesado digital de imágenes. Esta toolbox de procesado digital de imágenes está formada por un conjunto de funciones adicionales que amplían la capacidad del entorno numérico de Matlab y permiten realizar un gran número de operaciones de procesado digital de imágenes directamente a través del programa principal. Sin embargo, pese a que MATLAB cuenta con un buen apartado de ayuda tanto online como dentro del propio programa principal, la bibliografía disponible en castellano es muy limitada y en el caso particular de la toolbox de procesado digital de imágenes es prácticamente nula y altamente especializada, lo que requiere que los usuarios tengan una sólida formación en matemáticas y en procesado digital de imágenes. Partiendo de una labor de análisis de todas las funciones y posibilidades disponibles en la herramienta del programa, el proyecto clasificará, resumirá y explicará cada una de ellas a nivel de usuario, definiendo todas las variables de entrada y salida posibles, describiendo las tareas más habituales en las que se emplea cada función, comparando resultados y proporcionando ejemplos aclaratorios que ayuden a entender su uso y aplicación. Además, se introducirá al lector en el uso general de Matlab explicando las operaciones esenciales del programa, y se aclararán los conceptos más avanzados de la toolbox para que no sea necesaria una extensa formación previa. De este modo, cualquier alumno o profesor que se quiera iniciar en el procesado digital de imágenes con Matlab dispondrá de un documento que le servirá tanto para consultar y entender el funcionamiento de cualquier función de la toolbox como para implementar las operaciones más recurrentes dentro del procesado digital de imágenes. Matlab, one of the most used numerical computing environments in the world of research and teaching, has among its many tools a specific one for digital image processing. This digital image processing toolbox consists of a set of additional functions that extend the power of the digital environment of Matlab and allow to execute a large number of operations of digital image processing directly through the main program. However, despite the fact that MATLAB has a good help section both online and within the main program, the available bibliography is very limited in Castilian and is negligible and highly specialized in the particular case of the image processing toolbox, being necessary a strong background in mathematics and digital image processing. Starting from an analysis of all the available functions and possibilities in the program tool, the document will classify, summarize and explain each function at user level, defining all input and output variables possible, describing common tasks in which each feature is used, comparing results and providing illustrative examples to help understand its use and application. In addition, the reader will be introduced in the general use of Matlab explaining the essential operations within the program and clarifying the most advanced concepts of the toolbox so that an extensive prior formation will not be necessary. Thus, any student or teacher who wants to start digital image processing with Matlab will have a document that will serve to check and understand the operation of any function of the toolbox and also to implement the most recurrent operations in digital image processing.
Resumo:
This paper aims to study evolution of increase, distribution and classification of pits in 310S austenitic stainless steels obtained in the state as-received and heat-treated under different exposure times in saline. This work applicability has been based on a technique development for morphologic characterization of localized corrosion associated with description aspects of shapes, size and population-specific parameters. Methodology has been consisted in the following steps: specimens preparation, corrosion tests via salt spray in different conditions, microstructural analysis, pits profiles analysis and images analysis, digital processing and image analysis in order to characterize the pits distribution, morphology and size. Results obtained in digital processing and profiles image analysis have been subjected to statistical analysis using median as parameter in the alloy as received and treated. The alloy as received displays the following morphology: hemispheric pits> transition region A> transition region B> irregular> conic. The pits amount in the treated alloy at each exposure time is: transition region B> hemispherical> transition region A> conic> irregular.
Proteomic analysis of normal and malignant prostate tissue to identify novel proteins lost in cancer
Resumo:
BACKGROUND. Alterations of important protein pathways, including loss of prostate secretory granules, and disruption of the prostatic secretory pathway have been identified as early events in malignancy. In this study, proteomics was used to map the differences in protein expression between normal and malignant prostate tissues and to identify and analyze differentially expressed proteins in human prostate tissue with particular regard to the proteins lost in malignancy. METHODS. Small quantities of normal and malignant prostate tissue were taken fresh from 34 radical prostatectomy cases. After histological examination, proteins were solubilized from selected tissues and separated using two-dimensional electrophoresis. Using image analysis, the proteome of normal and malignant tissues were mapped and differentially expressed proteins (present in normal and absent in malignant tissue) were identified and subsequently analyzed using peptide mass finger printing and N-terminal sequencing. Western blotting and immunohistochemistry were performed to examine expression profiles and tissue localization of candidate proteins. RESULTS. Comparison of protein maps of normal and malignant prostate were used to identify 20 proteins which were lost in malignant transformation, including prostate specific antigen (PSA), alpha-l antichymotrypsin (ACT), haptoglobin, and lactoylglutathione lyase. Three of the 20 had not previously been reported in human prostate tissue (Ubiquitin-like NEDD8, calponin, and a follistatin-related protein). Western blotting confirmed differences in the expression profiles of NEDD8 and calponin, and immunohistochemistry demonstrated differences in the cellular localization of these two proteins in normal and malignant prostate glands. CONCLUSIONS. The expression of NEDD8, calponin, and the follistatin-related protein in normal prostate tissues is a novel finding and the role of these important functional proteins in normal prostate and their loss or reduced expression in prostate malignancy warrants further investigations. (C) 2002 Wiley-Liss, Inc.
Resumo:
Background: The prognostic significance of spontaneous regression in melanoma, especially thin lesions, has been a controversial issue for the past 20 years, although recent studies suggest that extensive and late regression may be related to worse prognosis. Many data suggest that lymphangiogenesis predicts metastatic spread in melanoma. Methods: We have quantified lymphatic microvascular density (LMVD) in thin (<= 1.0 mm) superficial spreading melanomas comparing regressive and nonregressive melanomas, regressive and nonregressive areas from the same tumor, and early and late histological stages of regression in the same tumor. In addition, we tried to correlate lymphangiogenesis and tumor growth phase. We conducted histological examinations and immunohistochemical analyses using monoclonal antibody D2-40 with subsequent quantification by image analysis of 37 melanomas, 16 regressive and 21 nonregressive (controls). Results: We found higher LMVD in the late stage of regression compared with nonregressive area (internal control) of regressive melanomas. Conclusions: Our study suggest that the late stage of spontaneous regression in thin melanomas may be related to worse prognosis as it showed higher LMVD, and evidence shows that this is related with increased risk of metastatic spread. But this supposition must be confirmed by a longer follow-up for detection of lymph node metastases.
Resumo:
In this work, we take advantage of association rule mining to support two types of medical systems: the Content-based Image Retrieval (CBIR) systems and the Computer-Aided Diagnosis (CAD) systems. For content-based retrieval, association rules are employed to reduce the dimensionality of the feature vectors that represent the images and to improve the precision of the similarity queries. We refer to the association rule-based method to improve CBIR systems proposed here as Feature selection through Association Rules (FAR). To improve CAD systems, we propose the Image Diagnosis Enhancement through Association rules (IDEA) method. Association rules are employed to suggest a second opinion to the radiologist or a preliminary diagnosis of a new image. A second opinion automatically obtained can either accelerate the process of diagnosing or to strengthen a hypothesis, increasing the probability of a prescribed treatment be successful. Two new algorithms are proposed to support the IDEA method: to pre-process low-level features and to propose a preliminary diagnosis based on association rules. We performed several experiments to validate the proposed methods. The results indicate that association rules can be successfully applied to improve CBIR and CAD systems, empowering the arsenal of techniques to support medical image analysis in medical systems. (C) 2009 Elsevier B.V. All rights reserved.