977 resultados para Image Reconstruction


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose Accurate three-dimensional (3D) models of lumbar vertebrae can enable image-based 3D kinematic analysis. The common approach to derive 3D models is by direct segmentation of CT or MRI datasets. However, these have the disadvantages that they are expensive, timeconsuming and/or induce high-radiation doses to the patient. In this study, we present a technique to automatically reconstruct a scaled 3D lumbar vertebral model from a single two-dimensional (2D) lateral fluoroscopic image. Methods Our technique is based on a hybrid 2D/3D deformable registration strategy combining a landmark-to-ray registration with a statistical shape model-based 2D/3D reconstruction scheme. Fig. 1 shows different stages of the reconstruction process. Four cadaveric lumbar spine segments (total twelve lumbar vertebrae) were used to validate the technique. To evaluate the reconstruction accuracy, the surface models reconstructed from the lateral fluoroscopic images were compared to the associated ground truth data derived from a 3D CT-scan reconstruction technique. For each case, a surface-based matching was first used to recover the scale and the rigid transformation between the reconstructed surface model Results Our technique could successfully reconstruct 3D surface models of all twelve vertebrae. After recovering the scale and the rigid transformation between the reconstructed surface models and the ground truth models, the average error of the 2D/3D surface model reconstruction over the twelve lumbar vertebrae was found to be 1.0 mm. The errors of reconstructing surface models of all twelve vertebrae are shown in Fig. 2. It was found that the mean errors of the reconstructed surface models in comparison to their associated ground truths after iterative scaled rigid registrations ranged from 0.7 mm to 1.3 mm and the rootmean squared (RMS) errors ranged from 1.0 mm to 1.7 mm. The average mean reconstruction error was found to be 1.0 mm. Conclusion An accurate, scaled 3D reconstruction of the lumbar vertebra can be obtained from a single lateral fluoroscopic image using a statistical shape model based 2D/3D reconstruction technique. Future work will focus on applying the reconstructed model for 3D kinematic analysis of lumbar vertebrae, an extension of our previously-reported imagebased kinematic analysis. The developed method also has potential applications in surgical planning and navigation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To assess the diagnostic accuracy, image quality, and radiation dose of an iterative reconstruction algorithm compared with a filtered back projection (FBP) algorithm for abdominal computed tomography (CT) at different tube voltages.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To investigate whether an adaptive statistical iterative reconstruction (ASIR) algorithm improves the image quality at low-tube-voltage (80-kVp), high-tube-current (675-mA) multidetector abdominal computed tomography (CT) during the late hepatic arterial phase.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: The assessment of coronary stents with present-generation 64-detector row computed tomography (HDCT) scanners is limited by image noise and blooming artefacts. We evaluated the performance of adaptive statistical iterative reconstruction (ASIR) for noise reduction in coronary stent imaging with HDCT. METHODS AND RESULTS: In 50 stents of 28 patients (mean age 64 ± 10 years) undergoing coronary CT angiography (CCTA) on an HDCT scanner the mean in-stent luminal diameter, stent length, image quality, in-stent contrast attenuation, and image noise were assessed. Studies were reconstructed using filtered back projection (FBP) and ASIR-FBP composites. ASIR resulted in reduced image noise vs. FBP (P < 0.0001). Two readers graded the CCTA stent image quality on a 4-point Likert scale and determined the proportion of interpretable stent segments. The best image quality for all clinical images was obtained with 40 and 60% ASIR with significantly larger luminal area visualization compared with FBP (+42.1 ± 5.4% with 100% ASIR vs. FBP alone; P < 0.0001) while the stent length was decreased (-4.7 ± 0.9%,

Reconstruction of CCTA from HDCT using 40 and 60% ASIR incrementally improves intra-stent luminal area, diameter visualization, and image quality compared with FBP reconstruction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE To determine the image quality of an iterative reconstruction (IR) technique in low-dose MDCT (LDCT) of the chest of immunocompromised patients in an intraindividual comparison to filtered back projection (FBP) and to evaluate the dose reduction capability. MATERIALS AND METHODS 30 chest LDCT scans were performed in immunocompromised patients (Brilliance iCT; 20-40 mAs; mean CTDIvol: 1.7 mGy). The raw data were reconstructed using FBP and the IR technique (iDose4™, Philips, Best, The Netherlands) set to seven iteration levels. 30 routine-dose MDCT (RDCT) reconstructed with FBP served as controls (mean exposure: 116 mAs; mean CDTIvol: 7.6 mGy). Three blinded radiologists scored subjective image quality and lesion conspicuity. Quantitative parameters including CT attenuation and objective image noise (OIN) were determined. RESULTS In LDCT high iDose4™ levels lead to a significant decrease in OIN (FBP vs. iDose7: subscapular muscle 139.4 vs. 40.6 HU). The high iDose4™ levels provided significant improvements in image quality and artifact and noise reduction compared to LDCT FBP images. The conspicuity of subtle lesions was limited in LDCT FBP images. It significantly improved with high iDose4™ levels (> iDose4). LDCT with iDose4™ level 6 was determined to be of equivalent image quality as RDCT with FBP. CONCLUSION iDose4™ substantially improves image quality and lesion conspicuity and reduces noise in low-dose chest CT. Compared to RDCT, high iDose4™ levels provide equivalent image quality in LDCT, hence suggesting a potential dose reduction of almost 80%.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVES In this phantom CT study, we investigated whether images reconstructed using filtered back projection (FBP) and iterative reconstruction (IR) with reduced tube voltage and current have equivalent quality. We evaluated the effects of different acquisition and reconstruction parameter settings on image quality and radiation doses. Additionally, patient CT studies were evaluated to confirm our phantom results. METHODS Helical and axial 256 multi-slice computed tomography scans of the phantom (Catphan(®)) were performed with varying tube voltages (80-140kV) and currents (30-200mAs). 198 phantom data sets were reconstructed applying FBP and IR with increasing iterations, and soft and sharp kernels. Further, 25 chest and abdomen CT scans, performed with high and low exposure per patient, were reconstructed with IR and FBP. Two independent observers evaluated image quality and radiation doses of both phantom and patient scans. RESULTS In phantom scans, noise reduction was significantly improved using IR with increasing iterations, independent from tissue, scan-mode, tube-voltage, current, and kernel. IR did not affect high-contrast resolution. Low-contrast resolution was also not negatively affected, but improved in scans with doses <5mGy, although object detectability generally decreased with the lowering of exposure. At comparable image quality levels, CTDIvol was reduced by 26-50% using IR. In patients, applying IR vs. FBP resulted in good to excellent image quality, while tube voltage and current settings could be significantly decreased. CONCLUSIONS Our phantom experiments demonstrate that image quality levels of FBP reconstructions can also be achieved at lower tube voltages and tube currents when applying IR. Our findings could be confirmed in patients revealing the potential of IR to significantly reduce CT radiation doses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE The aim of the present study was to evaluate a dose reduction in contrast-enhanced chest computed tomography (CT) by comparing the three latest generations of Siemens CT scanners used in clinical practice. We analyzed the amount of radiation used with filtered back projection (FBP) and an iterative reconstruction (IR) algorithm to yield the same image quality. Furthermore, the influence on the radiation dose of the most recent integrated circuit detector (ICD; Stellar detector, Siemens Healthcare, Erlangen, Germany) was investigated. MATERIALS AND METHODS 136 Patients were included. Scan parameters were set to a thorax routine: SOMATOM Sensation 64 (FBP), SOMATOM Definition Flash (IR), and SOMATOM Definition Edge (ICD and IR). Tube current was set constantly to the reference level of 100 mA automated tube current modulation using reference milliamperes. Care kV was used on the Flash and Edge scanner, while tube potential was individually selected between 100 and 140 kVp by the medical technologists at the SOMATOM Sensation. Quality assessment was performed on soft-tissue kernel reconstruction. Dose was represented by the dose length product. RESULTS Dose-length product (DLP) with FBP for the average chest CT was 308 mGy*cm ± 99.6. In contrast, the DLP for the chest CT with IR algorithm was 196.8 mGy*cm ± 68.8 (P = 0.0001). Further decline in dose can be noted with IR and the ICD: DLP: 166.4 mGy*cm ± 54.5 (P = 0.033). The dose reduction compared to FBP was 36.1% with IR and 45.6% with IR/ICD. Signal-to-noise ratio (SNR) was favorable in the aorta, bone, and soft tissue for IR/ICD in combination compared to FBP (the P values ranged from 0.003 to 0.048). Overall contrast-to-noise ratio (CNR) improved with declining DLP. CONCLUSION The most recent technical developments, namely IR in combination with integrated circuit detectors, can significantly lower radiation dose in chest CT examinations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Accurate three-dimensional (3D) models of lumbar vertebrae are required for image-based 3D kinematics analysis. MRI or CT datasets are frequently used to derive 3D models but have the disadvantages that they are expensive, time-consuming or involving ionizing radiation (e.g., CT acquisition). In this chapter, we present an alternative technique that can reconstruct a scaled 3D lumbar vertebral model from a single two-dimensional (2D) lateral fluoroscopic image and a statistical shape model. Cadaveric studies are conducted to verify the reconstruction accuracy by comparing the surface models reconstructed from a single lateral fluoroscopic image to the ground truth data from 3D CT segmentation. A mean reconstruction error between 0.7 and 1.4 mm was found.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the ongoing shift in the computer graphics industry toward Monte Carlo rendering, there is a need for effective, practical noise-reduction techniques that are applicable to a wide range of rendering effects and easily integrated into existing production pipelines. This course surveys recent advances in image-space adaptive sampling and reconstruction algorithms for noise reduction, which have proven very effective at reducing the computational cost of Monte Carlo techniques in practice. These approaches leverage advanced image-filtering techniques with statistical methods for error estimation. They are attractive because they can be integrated easily into conventional Monte Carlo rendering frameworks, they are applicable to most rendering effects, and their computational overhead is modest.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

These slides present several 3-D reconstruction methods to obtain the geometric structure of a scene that is viewed by multiple cameras. We focus on the combination of the geometric modeling in the image formation process with the use of standard optimization tools to estimate the characteristic parameters that describe the geometry of the 3-D scene. In particular, linear, non-linear and robust methods to estimate the monocular and epipolar geometry are introduced as cornerstones to generate 3-D reconstructions with multiple cameras. Some examples of systems that use this constructive strategy are Bundler, PhotoSynth, VideoSurfing, etc., which are able to obtain 3-D reconstructions with several hundreds or thousands of cameras. En esta presentación se tratan varios métodos de reconstrucción 3-D para la obtención de la estructura geométrica de una escena que es visualizada por varias cámaras. Se enfatiza la combinación de modelado geométrico del proceso de formación de la imagen con el uso de herramientas estándar de optimización para estimar los parámetros característicos que describen la geometría de la escena 3-D. En concreto, se presentan métodos de estimación lineales, no lineales y robustos de las geometrías monocular y epipolar como punto de partida para generar reconstrucciones con tres o más cámaras. Algunos ejemplos de sistemas que utilizan este enfoque constructivo son Bundler, PhotoSynth, VideoSurfing, etc., los cuales, en la práctica pueden llegar a reconstruir una escena con varios cientos o miles de cámaras.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The volumetric reconstruction technique presented in this paper employs a two-camera stereoscopic particle image velocimetry (SPIV) system in order to reconstruct the mean flow behind a fixed cylinder fitted with helical strakes, which are commonly used to suppress vortex-induced vibrations (VIV). The technique is based on the measurement of velocity fields at equivalent adjacent planes that results in pseudo volumetric fields. The main advantage over proper volumetric techniques is the avoidance of additional equipment and complexity. The averaged velocity fields behind the straked cylinders and the geometrical periodicity of the three-start configuration are used to further simplify the reconstruction process. Two straked cylindrical models with the same pitch (p = 10d) and two different heights (h = 0.1 and 0.2d) are tested. The reconstructed flow shows that the strakes introduce in the wake flow a well-defined wavelength of one-third of the pitch. Measurements of hydrodynamic forces, fluctuating velocity, vortex formation length, and vortex shedding frequency show the interdependence of the wake parameters. The vortex formation length is increased by the strakes, which is an important effect for the suppression of vortex-induced vibrations. The results presented complement previous investigations concerning the effectiveness of strakes as VIV suppressors and provide a basis of comparison to numerical simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intravascular ultrasound (IVUS) image segmentation can provide more detailed vessel and plaque information, resulting in better diagnostics, evaluation and therapy planning. A novel automatic segmentation proposal is described herein; the method relies on a binary morphological object reconstruction to segment the coronary wall in IVUS images. First, a preprocessing followed by a feature extraction block are performed, allowing for the desired information to be extracted. Afterward, binary versions of the desired objects are reconstructed, and their contours are extracted to segment the image. The effectiveness is demonstrated by segmenting 1300 images, in which the outcomes had a strong correlation to their corresponding gold standard. Moreover, the results were also corroborated statistically by having as high as 92.72% and 91.9% of true positive area fraction for the lumen and media adventitia border, respectively. In addition, this approach can be adapted easily and applied to other related modalities, such as intravascular optical coherence tomography and intravascular magnetic resonance imaging. (E-mail: matheuscardosomg@hotmail.com) (C) 2011 World Federation for Ultrasound in Medicine & Biology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work was to exemplify the specific contribution of both two- and three-dimensional (31)) X-ray computed tomography to characterise earthworm burrow systems. To achieve this purpose we used 3D mathematical morphology operators to characterise burrow systems resulting from the activity of an anecic (Aporrectodea noctunia), and an endogeic species (Allolobophora chlorotica), when both species were introduced either separately or together into artificial soil cores. Images of these soil cores were obtained using a medical X-ray tomography scanner. Three-dimensional reconstructions of burrow systems were obtained using a specifically developed segmentation algorithm. To study the differences between burrow systems, a set of classical tools of mathematical morphology (granulometries) were used. So-called granulometries based on different structuring elements clearly separated the different burrow systems. They enabled us to show that burrows made by the anecic species were fatter, longer, more vertical, more continuous but less sinuous than burrows of the endogeic species. The granulometry transform of the soil matrix showed that burrows made by A. nocturna were more evenly distributed than those of A. chlorotica. Although a good discrimination was possible when only one species was introduced into the soil cores, it was not possible to separate burrows of the two species from each other in cases where species were introduced into the same soil core. This limitation, partly due to the insufficient spatial resolution of the medical scanner, precluded the use of the morphological operators to study putative interactions between the two species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE. The purpose of the study was to investigate patient characteristics associated with image quality and their impact on the diagnostic accuracy of MDCT for the detection of coronary artery stenosis. MATERIALS AND METHODS. Two hundred ninety-one patients with a coronary artery calcification (CAC) score of <= 600 Agatston units (214 men and 77 women; mean age, 59.3 +/- 10.0 years [SD]) were analyzed. An overall image quality score was derived using an ordinal scale. The accuracy of quantitative MDCT to detect significant (>= 50%) stenoses was assessed using quantitative coronary angiography (QCA) per patient and per vessel using a modified 19-segment model. The effect of CAC, obesity, heart rate, and heart rate variability on image quality and accuracy were evaluated by multiple logistic regression. Image quality and accuracy were further analyzed in subgroups of significant predictor variables. Diagnostic analysis was determined for image quality strata using receiver operating characteristic (ROC) curves. RESULTS. Increasing body mass index (BMI) (odds ratio [OR] = 0.89, p < 0.001), increasing heart rate (OR = 0.90, p < 0.001), and the presence of breathing artifact (OR = 4.97, p = 0.001) were associated with poorer image quality whereas sex, CAC score, and heart rate variability were not. Compared with examinations of white patients, studies of black patients had significantly poorer image quality (OR = 0.58, p = 0.04). At a vessel level, CAC score (10 Agatston units) (OR = 1.03, p = 0.012) and patient age (OR = 1.02, p = 0.04) were significantly associated with the diagnostic accuracy of quantitative MDCT compared with QCA. A trend was observed in differences in the areas under the ROC curves across image quality strata at the vessel level (p = 0.08). CONCLUSION. Image quality is significantly associated with patient ethnicity, BMI, mean scan heart rate, and the presence of breathing artifact but not with CAC score at a patient level. At a vessel level, CAC score and age were associated with reduced diagnostic accuracy.