797 resultados para Ileal-pouch anastomosis
Resumo:
Advances in stem cell biology have challenged the notion that infarcted myocardium is irreparable. The pluripotent ability of stem cells to differentiate into specialized cell lines began to garner intense interest within cardiology when it was shown in animal models that intramyocardial injection of bone marrow stem cells (MSCs), or the mobilization of bone marrow stem cells with spontaneous homing to myocardium, could improve cardiac function and survival after induced myocardial infarction (MI) [1, 2]. Furthermore, the existence of stem cells in myocardium has been identified in animal heart [3, 4], and intense research is under way in an attempt to clarify their potential clinical application for patients with myocardial infarction. To date, in order to identify the best one, different kinds of stem cells have been studied; these have been derived from embryo or adult tissues (i.e. bone marrow, heart, peripheral blood etc.). Currently, three different biologic therapies for cardiovascular diseases are under investigation: cell therapy, gene therapy and the more recent “tissue-engineering” therapy . During my Ph.D. course, first I focalised my study on the isolation and characterization of Cardiac Stem Cells (CSCs) in wild-type and transgenic mice and for this purpose I attended, for more than one year, the Cardiovascular Research Institute of the New York Medical College, in Valhalla (NY, USA) under the direction of Doctor Piero Anversa. During this period I learnt different Immunohistochemical and Biomolecular techniques, useful for investigating the regenerative potential of stem cells. Then, during the next two years, I studied the new approach of cardiac regenerative medicine based on “tissue-engineering” in order to investigate a new strategy to regenerate the infracted myocardium. Tissue-engineering is a promising approach that makes possible the creation of new functional tissue to replace lost or failing tissue. This new discipline combines isolated functioning cells and biodegradable 3-dimensional (3D) polymeric scaffolds. The scaffold temporarily provides the biomechanical support for the cells until they produce their own extracellular matrix. Because tissue-engineering constructs contain living cells, they may have the potential for growth and cellular self-repair and remodeling. In the present study, I examined whether the tissue-engineering strategy within hyaluron-based scaffolds would result in the formation of alternative cardiac tissue that could replace the scar and improve cardiac function after MI in syngeneic heterotopic rat hearts. Rat hearts were explanted, subjected to left coronary descending artery occlusion, and then grafted into the abdomen (aorta-aorta anastomosis) of receiving syngeneic rat. After 2 weeks, a pouch of 3 mm2 was made in the thickness of the ventricular wall at the level of the post-infarction scar. The hyaluronic scaffold, previously engineered for 3 weeks with rat MSCs, was introduced into the pouch and the myocardial edges sutured with few stitches. Two weeks later we evaluated the cardiac function by M-Mode echocardiography and the myocardial morphology by microscope analysis. We chose bone marrow-derived mensenchymal stem cells (MSCs) because they have shown great signaling and regenerative properties when delivered to heart tissue following a myocardial infarction (MI). However, while the object of cell transplantation is to improve ventricular function, cardiac cell transplantation has had limited success because of poor graft viability and low cell retention, that’s why we decided to combine MSCs with a biopolimeric scaffold. At the end of the experiments we observed that the hyaluronan fibres had not been substantially degraded 2 weeks after heart-transplantation. Most MSCs had migrated to the surrounding infarcted area where they were especially found close to small-sized vessels. Scar tissue was moderated in the engrafted region and the thickness of the corresponding ventricular wall was comparable to that of the non-infarcted remote area. Also, the left ventricular shortening fraction, evaluated by M-Mode echocardiography, was found a little bit increased when compared to that measured just before construct transplantation. Therefore, this study suggests that post-infarction myocardial remodelling can be favourably affected by the grafting of MSCs delivered through a hyaluron-based scaffold
Resumo:
We review the functional and oncologic outcomes of seminal vesicle and prostate capsule sparing cystectomy combined with ileal orthotopic bladder substitution.
Resumo:
The need for and intensity of follow-up to detect disease recurrence after radical cystectomy (RC) for transitional cell carcinoma (TCC) remains a matter for debate.
Resumo:
The PAS-Port system (Cardica, Inc, Redwood City, CA) was used routinely for patients undergoing coronary surgery with at least one venous graft. Graft patency and clinical results were evaluated, respectively, at 6 months and 5 years after surgery.
Resumo:
In this study, facilitated anastomosis using an anastomotic device was compared to conventional hand-sewn (HS) vascular anastomosis in an animal model.
Resumo:
Continent catheterizable ileal pouches require regular irrigations to reduce the risk of bacteriuria and urinary tract infections (UTIs).
Resumo:
Data on long-term renal function are scarce for ileal conduit diversion (ICD) and even rarer for orthotopic ileal bladder substitution (BS).
Resumo:
Construction of a continent catheterizable urinary reservoir or an orthotopic bladder substitute requires substantial bowel resection, which can cause changes in bowel transit time. The reported incidence of chronic diarrhea after ileocecal resection is about 20%. Studies assessing bowel function after resection of 55-60 cm of ileum without compromising the ileocecal valve are scarce, and long-term results have not been reported.
Resumo:
The choice of the experimental aneurysm model is essential for valid embolization-device evaluations. So far, the use of the rabbit venous pouch arterial bifurcation aneurysm model has been limited by demanding microsurgery, low aneurysm patency rates, and high mortality. This study aimed to facilitate microsurgery and to reduce mortality by optimized peri-/postoperative management.
Resumo:
The excimer laser-assisted nonocclusive anastomosis (ELANA) technique has been developed as a clinical effective technique to perform intracranial high-flow bypass without temporary occlusion of cerebral vessels in otherwise untreatable or high-risk cerebrovascular diseases. We experimentally tested the application of a nonabsorbable cyanoacrylate-based sealant with the ELANA technique.
Resumo:
Since the first studies by Jain and Gorisch (1979), laser-assisted anastomoses have been steadily developed to a stage where clinical use is within reach. The laser-assisted vascular microanastomosis (LAMA) procedure is performed more quickly than conventional anastomosis, the surgically induced vessel damage is limited, and reduced bleeding after unclamping is observed.
Resumo:
Ileal lesions in Crohn's disease (CD) patients are colonized by pathogenic adherent-invasive Escherichia coli (AIEC) able to adhere to and invade intestinal epithelial cells (IEC), and to survive within macrophages. The interaction of AIEC with IEC depends on bacterial factors mainly type 1 pili, flagella, and outer membrane proteins. In humans, proteases can act as host defence mechanisms to counteract bacterial colonization. The protease meprin, composed of multimeric complexes of the two subunits alpha and beta, is abundantly expressed in IECs. Decreased levels of this protease correlate with the severity of the inflammation in patients with inflammatory bowel disease. The aim of the present study was to analyze the ability of meprin to modulate the interaction of AIEC with IECs. In patients with ileal CD we observed decreased levels of meprins, in particular that of meprin β. Dose-dependent inhibition of the abilities of AIEC strain LF82 to adhere to and invade intestinal epithelial T84 cells was observed when bacteria were pre-treated with both exogenous meprin α and meprin β. Dose-dependent proteolytic degradation of type 1 pili was observed in the presence of active meprins, but not with heat-inactivated meprins, and pretreatment of AIEC bacteria with meprins impaired their ability to bind mannosylated host receptors and led to decreased secretion of the pro-inflammatory cytokine IL-8 by infected T84 cells. Thus, decreased levels of protective meprins as observed in CD patients may contribute to increased AIEC colonization.