206 resultados para Icelandic


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment during the development of the phytoplankton spring bloom at 4 stations in the North Atlantic. Station 1 in the Icelandic Basin was visited four times (26 March, 8 April, 18 April, 27 April), Station 2 in the southern Norwegian Sea was visited three times (30 March, 13 April, 23 April), Station 3 in the North Sea was visited twice (2 April, 15 April) and one intermediate station was visited once. The data were sampled by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10 (body volume) increments (Edvardsen et al., 2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column (Herman et al., 2004; doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment during the development of the phytoplankton spring bloom at 4 stations in the North Atlantic. Station 1 in the Icelandic Basin was visited four times (26 March, 8 April, 18 April, 27 April), Station 2 in the southern Norwegian Sea was visited three times (30 March, 13 April, 23 April), Station 3 in the North Sea was visited twice (2 April, 15 April) and one intermediate station was visited once. The data were sampled by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10 (body volume) increments (Edvardsen et al., 2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column (Herman et al., 2004; doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment during the development of the phytoplankton spring bloom at 4 stations in the North Atlantic. Station 1 in the Icelandic Basin was visited four times (26 March, 8 April, 18 April, 27 April), Station 2 in the southern Norwegian Sea was visited three times (30 March, 13 April, 23 April), Station 3 in the North Sea was visited twice (2 April, 15 April) and one intermediate station was visited once. The data were sampled by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10 (body volume) increments (Edvardsen et al., 2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column (Herman et al., 2004; doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high-resolution study of palaeoceanographic changes off North Iceland during the time period 8600-5200 cal year BP is based on benthic and planktonic foraminiferal assemblages. The core material (MD99-2275) was obtained from about 440 m water depth on the eastern part of the North Icelandic shelf. Changes in the faunal composition are interpreted to be mainly caused by variations in the strength of the relatively warm, high-salinity Irminger Current and the cold East Icelandic Current, which have been shown to be linked to the climatic changes in the North Atlantic region. Environmental proxies at that site are particularly sensitive to palaeoceanographic changes due to its position close to the marine Polar Front. Benthic assemblages show that relatively cold conditions prevailed at the base of the record. An increase in the influence of Atlantic water masses at the sea floor is seen at around 8400 cal year BP, whereas the surface waters were relatively warm already at 8600 cal year BP. The warming was interrupted by a cold event at around 8100-8000 cal year BP, registered both in the bottom and surface waters and correlated with the so-called 8.2 kyr cooling event. Both the benthic and the planktonic faunal compositions indicate that the Irminger Current had maximum influence in the area between 8000 and about 7300 cal year BP, followed by a gradually decreasing influence through the remaining part of the studied time interval. It is suggested that the contribution of Atlantic water masses from the east and north-east to the Arctic Surface waters off North Iceland increased after around 7000 cal year BP, and that this was further intensified after 6200 cal year BP. At present, the Arctic Surface Water north of Iceland consists of Polar waters, intermittently with direct influence from the East Greenland Current, mixed with Atlantic waters derived from the eastern part of the Nordic Seas. A comparison of the mean values of selected environmental proxies in the interval 8600-5200 cal year BP with the upper part of the same core shows that the water masses north of Iceland were considerably warmer during the Holocene thermal maximum than during the last 2000 cal year. In general, results from core MD99-2275 are in accordance with other marine records from the North Icelandic shelf and the northern North Atlantic region, although a detailed comparison on a centennial time scale is hampered by problems with spatial as well as temporal changes in the marine reservoir ages in the region.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RV POSEIDON cruise POS264 was carried out by the Institut für Meereskunde of the University of Hamburg and staff from the Niels Bohr Instituttet for Astronomi, Fysik og Geofysik of the University of Copenhagen also participated. The cruise had several objectives: - to educate undergraduate students in the handling of oceanographic instrumentation and in the collection and analysis of field data, - to map the cold overflow through the Faroe-Bank Channel from the Norwegian Sea into the Icelandic Basin and to study its short-time variability and - to quantify the contributions of the water masses which are involved in the mixing of the overflow plume with its ambient water. The planning and preparation of the cruise involved the participating students and was carried out during seminars, both at the Universities of Hamburg and Copenhagen. Following a review of the recent literature and an analysis of historical data the observational programme was designed. Hydrographic and current profiling stations were occupied along several sections crossing the overflow. The experiment was financed by the University of Hamburg. Temperature, salinity and dissolved oxygen data from CTD stations are presented. The temperature and salinity data were quality controlled and calibrated. Oxygen data are not calibrated as no oxygen samples were taken additionally during the cruise.