999 resultados para Ice-content


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high complexity of cloud parameterizations now held in models puts more pressure on observational studies to provide useful means to evaluate them. One approach to the problem put forth in the modelling community is to evaluate under what atmospheric conditions the parameterizations fail to simulate the cloud properties and under what conditions they do a good job. It is the ambition of this paper to characterize the variability of the statistical properties of tropical ice clouds in different tropical "regimes" recently identified in the literature to aid the development of better process-oriented parameterizations in models. For this purpose, the statistical properties of non-precipitating tropical ice clouds over Darwin, Australia are characterized using ground-based radar-lidar observations from the Atmospheric Radiation Measurement (ARM) Program. The ice cloud properties analysed are the frequency of ice cloud occurrence, the morphological properties (cloud top height and thickness), and the microphysical and radiative properties (ice water content, visible extinction, effective radius, and total concentration). The variability of these tropical ice cloud properties is then studied as a function of the large-scale cloud regimes derived from the International Satellite Cloud Climatology Project (ISCCP), the amplitude and phase of the Madden-Julian Oscillation (MJO), and the large-scale atmospheric regime as derived from a long-term record of radiosonde observations over Darwin. The vertical variability of ice cloud occurrence and microphysical properties is largest in all regimes (1.5 order of magnitude for ice water content and extinction, a factor 3 in effective radius, and three orders of magnitude in concentration, typically). 98 % of ice clouds in our dataset are characterized by either a small cloud fraction (smaller than 0.3) or a very large cloud fraction (larger than 0.9). In the ice part of the troposphere three distinct layers characterized by different statistically-dominant microphysical processes are identified. The variability of the ice cloud properties as a function of the large-scale atmospheric regime, cloud regime, and MJO phase is large, producing mean differences of up to a factor 8 in the frequency of ice cloud occurrence between large-scale atmospheric regimes and mean differences of a factor 2 typically in all microphysical properties. Finally, the diurnal cycle of the frequency of occurrence of ice clouds is also very different between regimes and MJO phases, with diurnal amplitudes of the vertically-integrated frequency of ice cloud occurrence ranging from as low as 0.2 (weak diurnal amplitude) to values in excess of 2.0 (very large diurnal amplitude). Modellers should now use these results to check if their model cloud parameterizations are capable of translating a given atmospheric forcing into the correct statistical ice cloud properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ice cloud representation in general circulation models remains a challenging task, due to the lack of accurate observations and the complexity of microphysical processes. In this article, we evaluate the ice water content (IWC) and ice cloud fraction statistical distributions from the numerical weather prediction models of the European Centre for Medium-Range Weather Forecasts (ECMWF) and the UK Met Office, exploiting the synergy between the CloudSat radar and CALIPSO lidar. Using the last three weeks of July 2006, we analyse the global ice cloud occurrence as a function of temperature and latitude and show that the models capture the main geographical and temperature-dependent distributions, but overestimate the ice cloud occurrence in the Tropics in the temperature range from −60 °C to −20 °C and in the Antarctic for temperatures higher than −20 °C, but underestimate ice cloud occurrence at very low temperatures. A global statistical comparison of the occurrence of grid-box mean IWC at different temperatures shows that both the mean and range of IWC increases with increasing temperature. Globally, the models capture most of the IWC variability in the temperature range between −60 °C and −5 °C, and also reproduce the observed latitudinal dependencies in the IWC distribution due to different meteorological regimes. Two versions of the ECMWF model are assessed. The recent operational version with a diagnostic representation of precipitating snow and mixed-phase ice cloud fails to represent the IWC distribution in the −20 °C to 0 °C range, but a new version with prognostic variables for liquid water, ice and snow is much closer to the observed distribution. The comparison of models and observations provides a much-needed analysis of the vertical distribution of IWC across the globe, highlighting the ability of the models to reproduce much of the observed variability as well as the deficiencies where further improvements are required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The observed decline in summer sea ice extent since the 1970s is predicted to continue until the Arctic Ocean is seasonally ice free during the 21st Century. This will lead to a much perturbed Arctic climate with large changes in ocean surface energy flux. Svalbard, located on the present day sea ice edge, contains many low lying ice caps and glaciers and is expected to experience rapid warming over the 21st Century. The total sea level rise if all the land ice on Svalbard were to melt completely is 0.02 m. The purpose of this study is to quantify the impact of climate change on Svalbard’s surface mass balance (SMB) and to determine, in particular, what proportion of the projected changes in precipitation and SMB are a result of changes to the Arctic sea ice cover. To investigate this a regional climate model was forced with monthly mean climatologies of sea surface temperature (SST) and sea ice concentration for the periods 1961–1990 and 2061–2090 under two emission scenarios. In a novel forcing experiment, 20th Century SSTs and 21st Century sea ice were used to force one simulation to investigate the role of sea ice forcing. This experiment results in a 3.5 m water equivalent increase in Svalbard’s SMB compared to the present day. This is because over 50 % of the projected increase in winter precipitation over Svalbard under the A1B emissions scenario is due to an increase in lower atmosphere moisture content associated with evaporation from the ice free ocean. These results indicate that increases in precipitation due to sea ice decline may act to moderate mass loss from Svalbard’s glaciers due to future Arctic warming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of water wave scattering by a circular ice floe, floating in fluid of finite depth, is formulated and solved numerically. Unlike previous investigations of such situations, here we allow the thickness of the floe (and the fluid depth) to vary axisymmetrically and also incorporate a realistic non-zero draught. A numerical approximation to the solution of this problem is obtained to an arbitrary degree of accuracy by combining a Rayleigh–Ritz approximation of the vertical motion with an appropriate variational principle. This numerical solution procedure builds upon the work of Bennets et al. (2007, J. Fluid Mech., 579, 413–443). As part of the numerical formulation, we utilize a Fourier cosine expansion of the azimuthal motion, resulting in a system of ordinary differential equations to solve in the radial coordinate for each azimuthal mode. The displayed results concentrate on the response of the floe rather than the scattered wave field and show that the effects of introducing the new features of varying floe thickness and a realistic draught are significant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The assumed relationship between ice particle mass and size is profoundly important in radar retrievals of ice clouds, but, for millimeter-wave radars, shape and preferred orientation are important as well. In this paper the authors first examine the consequences of the fact that the widely used ‘‘Brown and Francis’’ mass–size relationship has often been applied to maximumparticle dimension observed by aircraftDmax rather than to the mean of the particle dimensions in two orthogonal directions Dmean, which was originally used by Brown and Francis. Analysis of particle images reveals that Dmax ’ 1.25Dmean, and therefore, for clouds for which this mass–size relationship holds, the consequences are overestimates of ice water content by around 53% and of Rayleigh-scattering radar reflectivity factor by 3.7 dB. Simultaneous radar and aircraft measurements demonstrate that much better agreement in reflectivity factor is provided by using this mass–size relationship with Dmean. The authors then examine the importance of particle shape and fall orientation for millimeter-wave radars. Simultaneous radar measurements and aircraft calculations of differential reflectivity and dual-wavelength ratio are presented to demonstrate that ice particles may usually be treated as horizontally aligned oblate spheroids with an axial ratio of 0.6, consistent with them being aggregates. An accurate formula is presented for the backscatter cross section apparent to a vertically pointing millimeter-wave radar on the basis of a modified version of Rayleigh–Gans theory. It is then shown that the consequence of treating ice particles as Mie-scattering spheres is to substantially underestimate millimeter-wave reflectivity factor when millimeter-sized particles are present, which can lead to retrieved ice water content being overestimated by a factor of 4.h

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article focuses on the characteristics of persistent thin single-layer mixed-phase clouds. We seek to answer two important questions: (i) how does ice continually nucleate and precipitate from these clouds, without the available ice nuclei becoming depleted? (ii) how do the supercooled liquid droplets persist in spite of the net flux of water vapour to the growing ice crystals? These questions are answered quantitatively using in situ and radar observations of a long-lived mixed-phase cloud layer over the Chilbolton Observatory. Doppler radar measurements show that the top 500 m of cloud (the top 250 m of which is mixed-phase, with ice virga beneath) is turbulent and well-mixed, and the liquid water content is adiabatic. This well-mixed layer is bounded above and below by stable layers. This inhibits entrainment of fresh ice nuclei into the cloud layer, yet our in situ and radar observations show that a steady flux of ≈100 m−2s−1 ice crystals fell from the cloud over the course of ∼1 day. Comparing this flux to the concentration of conventional ice nuclei expected to be present within the well-mixed layer, we find that these nuclei would be depleted within less than 1 h. We therefore argue that nucleation in these persistent supercooled clouds is strongly time-dependent in nature, with droplets freezing slowly over many hours, significantly longer than the few seconds residence time of an ice nucleus counter. Once nucleated, the ice crystals are observed to grow primarily by vapour deposition, because of the low liquid water path (21 g m−2) yet vapour-rich environment. Evidence for this comes from high differential reflectivity in the radar observations, and in situ imaging of the crystals. The flux of vapour from liquid to ice is quantified from in situ measurements, and we show that this modest flux (3.3 g m−2h−1) can be readily offset by slow radiative cooling of the layer to space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During glacial periods, dust deposition rates and inferred atmospheric concentrations were globally much higher than present. According to recent model results, the large enhancement of atmospheric dust content at the last glacial maximum (LGM) can be explained only if increases in the potential dust source areas are taken into account. Such increases are to be expected, due to effects of low precipitation and low atmospheric (CO2) on plant growth. Here the modelled three-dimensional dust fields from Mahowald et al. and modelled seasonally varying surface-albedo fields derived in a parallel manner, are used to quantify the mean radiative forcing due to modern (non-anthropogenic) and LGM dust. The effect of mineralogical provenance on the radiative properties of the dust is taken into account, as is the range of optical properties associated with uncertainties about the mixing state of the dust particles. The high-latitude (poleward of 45°) mean change in forcing (LGM minus modern) is estimated to be small (–0.9 to +0.2 W m–2), especially when compared to nearly –20 W m–2 due to reflection from the extended ice sheets. Although the net effect of dust over ice sheets is a positive forcing (warming), much of the simulated high-latitude dust was not over the ice sheets, but over unglaciated regions close to the expanded dust source region in central Asia. In the tropics the change in forcing is estimated to be overall negative, and of similarly large magnitude (–2.2 to –3.2 W m–2) to the radiative cooling effect of low atmospheric (CO2). Thus, the largest long-term climatic effect of the LGM dust is likely to have been a cooling of the tropics. Low tropical sea-surface temperatures, low atmospheric (CO2) and high atmospheric dust loading may be mutually reinforcing due to multiple positive feedbacks, including the negative radiative forcing effect of dust.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We used Little Ice Age (LIA) trimlines and moraines to assess changes in South American glaciers over the last ∼140 years. We determined the extent and length of 640 glaciers during the LIA (∼ AD 1870) and 626 glaciers (the remainder having entirely disappeared) in 1986, 2001 and 2011. The calculated reduction in glacierized area between the LIA and 2011 is 4131 km2 (15.4%), with 660 km2 (14.2%) being lost from the Northern Patagonia Icefield (NPI), 1643 km2 (11.4%) from the Southern Patagonia Icefield (SPI) and 306 km2 (14.4%) from Cordillera Darwin. Latitude, size and terminal environment (calving or land-terminating) exert the greatest control on rates of shrinkage. Small, northerly, land-terminating glaciers shrank fastest. Annual rates of area loss increased dramatically after 2001 for mountain glaciers north of 52° S and the large icefields, with the NPI and SPI now shrinking at 9.4 km2 a–1 (0.23% a–1) and 20.5 km2 a–1 (0.15% a–1) respectively. The shrinkage of glaciers between 52° S and 54° S accelerated after 1986, and rates of shrinkage from 1986 to 2011 remained steady. Icefield outlet glaciers, isolated glaciers and ice caps south of 54° S shrank faster from 1986 to 2001 than they did from 2001 to 2011.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the nature of air parcels that exhibit ice-supersaturation is important because they are the regions of potential formation of both cirrus and aircraft contrails, which affect the radiation balance. Ice-supersaturated air parcels in the upper troposphere and lower stratosphere over the North Atlantic are investigated using Lagrangian trajectories. The trajectory calculations use ERA-Interim data for three winter and three summer seasons, resulting in approximately 200,000 trajectories with ice-supersaturation for each season. For both summer and winter, the median duration of ice-supersaturation along a trajectory is less than 6 hours. 5% of air which becomes ice-supersaturated in the troposphere, and 23% of air which becomes ice-supersaturated in the stratosphere will remain ice-supersaturated for at least 24 hours. Weighting the ice-supersaturation duration with the observed frequency indicates the likely overall importance of the longer duration ice-supersaturated trajectories. Ice-supersaturated air parcels typically experience a decrease in moisture content while ice-supersaturated, suggesting that cirrus clouds eventually form in the majority of such air. A comparison is made between short-lived (less than 24 h) and long-lived (greater than 24 h) ice-supersaturated air flows. For both air flows, ice-supersaturation occurs around the northernmost part of the trajectory. Short-lived ice-supersaturated air flows show no significant differences in speed or direction of movement to subsaturated air parcels. However, long-lived ice-supersaturated air occurs in slower moving air flows, which implies that they are not associated with the fastest moving air through a jet stream.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The subgrid-scale spatial variability in cloud water content can be described by a parameter f called the fractional standard deviation. This is equal to the standard deviation of the cloud water content divided by the mean. This parameter is an input to schemes that calculate the impact of subgrid-scale cloud inhomogeneity on gridbox-mean radiative fluxes and microphysical process rates. A new regime-dependent parametrization of the spatial variability of cloud water content is derived from CloudSat observations of ice clouds. In addition to the dependencies on horizontal and vertical resolution and cloud fraction included in previous parametrizations, the new parametrization includes an explicit dependence on cloud type. The new parametrization is then implemented in the Global Atmosphere 6 (GA6) configuration of the Met Office Unified Model and used to model the effects of subgrid variability of both ice and liquid water content on radiative fluxes and autoconversion and accretion rates in three 20-year atmosphere-only climate simulations. These simulations show the impact of the new regime-dependent parametrization on diagnostic radiation calculations, interactive radiation calculations and both interactive radiation calculations and in a new warm microphysics scheme. The control simulation uses a globally constant f value of 0.75 to model the effect of cloud water content variability on radiative fluxes. The use of the new regime-dependent parametrization in the model results in a global mean which is higher than the control's fixed value and a global distribution of f which is closer to CloudSat observations. When the new regime-dependent parametrization is used in radiative transfer calculations only, the magnitudes of short-wave and long-wave top of atmosphere cloud radiative forcing are reduced, increasing the existing global mean biases in the control. When also applied in a new warm microphysics scheme, the short-wave global mean bias is reduced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present ocean model sensitivity experiments aimed at separating the influence of the projected changes in the “thermal” (near-surface air temperature) and “wind” (near-surface winds) forcing on the patterns of sea level and ocean heat content. In the North Atlantic, the distribution of sea level change is more due to the “thermal” forcing, whereas it is more due to the “wind” forcing in the North Pacific; in the Southern Ocean, the “thermal” and “wind” forcing have a comparable influence. In the ocean adjacent to Antarctica the “thermal” forcing leads to an inflow of warmer waters on the continental shelves, which is somewhat attenuated by the “wind” forcing. The structure of the vertically integrated heat uptake is set by different processes at low and high latitudes: at low latitudes it is dominated by the heat transport convergence, whereas at high latitudes it represents a small residual of changes in the surface flux and advection of heat. The structure of the horizontally integrated heat content tendency is set by the increase of downward heat flux by the mean circulation and comparable decrease of upward heat flux by the subgrid-scale processes; the upward eddy heat flux decreases and increases by almost the same magnitude in response to, respectively, the “thermal” and “wind” forcing. Regionally, the surface heat loss and deep convection weaken in the Labrador Sea, but intensify in the Greenland Sea in the region of sea ice retreat. The enhanced heat flux anomaly in the subpolar Atlantic is mainly caused by the “thermal” forcing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents SPARE-ICE, the Synergistic Passive Atmospheric Retrieval Experiment-ICE. SPARE-ICE is the first Ice Water Path (IWP) product combining infrared and microwave radiances. By using only passive operational sensors, the SPARE-ICE retrieval can be used to process data from at least the NOAA 15 to 19 and MetOp satellites, obtaining time series from 1998 onward. The retrieval is developed using collocations between passive operational sensors (solar, terrestrial infrared, microwave), the CloudSat radar, and the CALIPSO lidar. The collocations form a retrieval database matching measurements from passive sensors against the existing active combined radar-lidar product 2C-ICE. With this retrieval database, we train a pair of artificial neural networks to detect clouds and retrieve IWP. When considering solar, terrestrial infrared, and microwave-based measurements, we show that any combination of two techniques performs better than either single-technique retrieval. We choose not to include solar reflectances in SPARE-ICE, because the improvement is small, and so that SPARE-ICE can be retrieved both daytime and nighttime. The median fractional error between SPARE-ICE and 2C-ICE is around a factor 2, a figure similar to the random error between 2C-ICE ice water content (IWC) and in situ measurements. A comparison of SPARE-ICE with Moderate Resolution Imaging Spectroradiometer (MODIS), Pathfinder Atmospheric Extended (PATMOS-X), and Microwave Surface and Precipitation Products System (MSPPS) indicates that SPARE-ICE appears to perform well even in difficult conditions. SPARE-ICE is available for public use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vertical distribution of cloud cover has a significant impact on a large number of meteorological and climatic processes. Cloud top altitude and cloud geometrical thickness are then essential. Previous studies established the possibility of retrieving those parameters from multi-angular oxygen A-band measurements. Here we perform a study and comparison of the performances of future instruments. The 3MI (Multi-angle, Multi-channel and Multi-polarization Imager) instrument developed by EUMETSAT, which is an extension of the POLDER/PARASOL instrument, and MSPI (Multi-angles Spectro-Polarimetric Imager) develoloped by NASA's Jet Propulsion Laboratory will measure total and polarized light reflected by the Earth's atmosphere–surface system in several spectral bands (from UV to SWIR) and several viewing geometries. Those instruments should provide opportunities to observe the links between the cloud structures and the anisotropy of the reflected solar radiation into space. Specific algorithms will need be developed in order to take advantage of the new capabilities of this instrument. However, prior to this effort, we need to understand, through a theoretical Shannon information content analysis, the limits and advantages of these new instruments for retrieving liquid and ice cloud properties, and especially, in this study, the amount of information coming from the A-Band channel on the cloud top altitude (CTOP) and geometrical thickness (CGT). We compare the information content of 3MI A-Band in two configurations and that of MSPI. Quantitative information content estimates show that the retrieval of CTOP with a high accuracy is possible in almost all cases investigated. The retrieval of CGT seems less easy but possible for optically thick clouds above a black surface, at least when CGT > 1–2 km.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To determine the effects of storage of arterial and venous blood samples in ice water on blood gas and acid-base measurements.Design: Prospective, in vitro, laboratory study.Setting: School of veterinary medicine.Subjects: Six healthy dogs.Measurements and main results: Baseline measurements of partial pressure of oxygen (PO2), partial pressure of carbon dioxide (PCO2), pH, hemoglobin concentration (tHb), oxyhemoglobin saturation, and oxygen content (ContO(2)) were made. Bicarbonate (HCO3) and standard base excess (SBE) were calculated. Arterial and venous blood samples were separated into 1 and 3 mL samples, anaerobically transferred into 3 mL plastic syringes, and stored in ice water for 6 hours. Measurements were repeated at 15, 30 minutes, and 1, 2, 4, and 6 hours after baseline measurements. Arterial (a) PO2 increased significantly from baseline after 30 minutes of storage in the 1 mL samples and after 2 hours in the 3 mL samples. Venous (v) PO2 was significantly increased from baseline after 4 hours in the 1 mL samples and after 6 hours in the 3 mL samples. The pHa significantly decreased after 2 hours of storage in the 1 mL samples and after 4 hours in the 3 mL samples. In both the 1 and 3 mL samples, pHv decreased significantly only after 6 hours. Neither the arterial nor the venous PCO2 values changed significantly in the 1 mL samples and increased only after 6 hours in the 3 mL samples. No significant changes in tHb, ContO(2), SBE, or HCO3 were detected.Conclusions: the PO2 of arterial and venous blood increased significantly when samples were stored in plastic syringes in ice water. These increases are attributable to the diffusion of oxygen from and through the plastic of the syringe into the blood, which occurred at a rate that exceeded metabolic consumption of oxygen by the nucleated cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ice used for human consumption or to refrigerate foods can be contaminated with pathogenic microorganisms and may become a vehicle for human infection. To evaluate the microbiological content of commercial ice and ice used to refrigerate fish and seafood, 60 ice samples collected at six different retail points in the city of Araraquara, SP, Brazil, were studied. The following parameters were determined: total plate counts (37° C and 4° C), most probable number (MPN) for total coliforms, fecal coliforms and Escherichia coli, presence of Salmonella spp., Shigella spp., Yersinia spp., E. coli, Vibrio cholerae and Aeromonas spp.. Results suggested poor hygienic conditions of ice production due to the presence of indicator micro-organisms. Fifty strains of E. coli of different serotypes, as well as one Y. enterocolitica biotype 1, serogroup 0:5, 27 and phage type Xz (Ye 1/05,27/Xz) and one Salmonella Enteritidis phage type 1 (PT1) were isolated. Aeromonas spp., Shigella spp. and V. cholerae were not detected. The presence of high numbers of coliforms, heterotrophic indicator micro-organisms and pathogenic strains suggested that commercial ice and ice used to refrigerate fish and seafood may rep resent a potential hazard to the consumer in our community. © 2002 Elsevier Science Ltd. All rights reserved.