998 resultados para IRON SULFIDE NANOSTRUCTURES
Resumo:
Large scale high yield cadmium sulfide (CdS) nanowires with uniform diameter were synthesized using a rapid and simple solvo-chemical and hydrothermal route assisted by the surfactant cetyltrimethylammonium bromide (CTAB). Unique CdS nanowires of different morphologies could be selectively produced by only varying the concentration of CTAB in the reaction system with cadmium acetate, sulfur powder and ethylenediamine. We obtained CdS nanowires with diameters of 64–65 nm and lengths of up to several micrometers. A comparative study of the optical properties of ferroelectric liquid crystal (FLC) Felix-017/100 doped with 1% of CdS nanowires was performed. Response times of the order of from 160 to 180 μs, rotational viscosities of the order of from 5000 to 3000 mN s m−2 and polarizations of the order of from 10 to 70 nC cm−2 were measured. We also observed an anti-ferroelectric to ferroelectric transition for CdS doped FLC instead of the ferroelectric to paraelectric transition for pure FLC.
Resumo:
A simple and scalable chemical approach has been proposed for the generation of 1-dimensional nanostructures of two most important inorganic materials such as zinc oxide and cadmium sulfide. By controlling the growth habit of the nanostructures with manipulated reaction conditions, the diameter and uniformity of the nanowires/nanorods were tailored. We studied extensively optical behavior and structural growth of CdS NWs and ZnO NRs doped ferroelectric liquid crystal Felix-017/100. Due to doping band gap has been changed and several blue shifts occurred in photoluminescence spectra because of nanoconfinement effect and mobility of charges.
Resumo:
In the facultative anaerobe Escherichia coli, the transcription factor FNR (fumarate nitrate reduction) regulates gene expression in response to oxygen deprivation. To investigate how the activity of FNR is regulated by oxygen availability, two mutant proteins, DA154 and LH28-DA154, which have enhanced in vivo activity in the presence of oxygen, were purified and compared. Unlike other previously examined FNR preparations, the absorption spectrum of LH28-DA154 had two maxima at 324 nm and 419 nm, typical of iron-sulfur (Fe-S)-containing proteins. Consistent with these data, metal analysis showed that only the LH28-DA154 protein contained a significant amount of iron and acid-labile sulfide, and, by low temperature EPR spectroscopy, a signal typical of a [3Fe-4S]+ cluster was detected. The LH28-DA154 protein that contained the Fe-S cluster also contained a higher proportion of dimers and had a 3- to 4-fold higher apparent affinity for the target DNA than the DA154 protein. In agreement with this, we found that when the LH28-DA154 protein was treated with an iron chelator (alpha,alpha'-dipyridyl), it lost its characteristic absorption and the apparent affinity for DNA was reduced 6-fold. However, increased DNA binding and the characteristic absorption spectrum could be restored by in vitro reconstitution of the Fe-S center. DNA binding of the LH28-DA154 protein was also affected by the redox state of the Fe-S center, since protein exposed to oxygen bound 1/10th as much DNA as the protein reduced anaerobically with dithionite. The observation that DNA binding is enhanced when the Fe-S center is reduced indicates that the redox state of the Fe-S center affects the DNA-binding activity of this protein and suggests a possible mechanism for regulation of the wild-type protein.
Resumo:
Fisherman Islands is an area of reclaimed land at the mouth of the Brisbane River in Queensland, Australia. Ongoing groundwater monitoring has found elevated concentrations of hydrogen sulfide (H2S) in the groundwater on the island. The presence of H2S on Fisherman Islands is of concern because of its toxic nature, the potential for acid sulfate soil formation, and its noxious odor. The aim of this study was,to, identify the sources of H2S within the groundwater on Fisherman Islands. It was hypothesized that the H2S is being formed by sulfate reducing bacteria acting on sulfate from seawater, rather than the introduction of sulfide with the dredge sediments. Groundwater and soil samples were collected and analyzed for sulfide, sulfate, and organic carbon contents. Elevated concentrations of sulfides coincide with,elevated concentrations of sulfate in the groundwater and elevated concentrations of organic carbon in the sediments, supporting the hypothesis that sulfide formation is the result of heterotrophic, sulfate reducing organisms.
Resumo:
A textural and microstructural study of a variety of zinc sulfide-containing ores has been undertaken, and the possible depositional and deformational controls of textural and microstructural development considered. Samples for the study were taken from both deformed and undeformed zinc ores of the Central U.S. Appalachians, and deformed zinc ores of the English Pennines. A variety of mineralogical techniques were employed, including transmitted and reflected light microscopy of etched and unetched material, transmission electron microscopy and electron microprobe analysis. For the Pennine zinc sulfides, spectroscopic, x-ray diffraction and fluid inclusion studies were also undertaken. Optical and electron optical examination of the Appalachian material confirmed the suitability of zinc sulfide for detailed study with such techniques. Growth and deformation-related microstructures could be distinguished from specimen-preparation induced artifacts. A deformationally-mduced lamelliform optical anisotropy is seen to be developed in areas hosting a dense planar microstructure of {111} twin- and slip-planes. The Pennine zinc sulfide texturally records a changing depositional environment. Thus, for example, delicately growth- zoned crystals are truncated and cross-cut by solution disconformities. Fluid inclusion studies indicate a highly saline (20-25 wt. % equiv. NaCl), low temperature (100-150°C.) fluid. Texturally, two varieties of zinc sulfide can be recognised; a widely developed, iron- banded variety, and a paragenetically early variety, banded due to horizons rich in crystal defects and microscopic inclusions. The zinc sulfide takes the form of a disordered 3C-polytype, with much of the disorder being deformational in origin. Twin- and slip-plane fabrics are developed . A deformation-related optical anisotropy is seen to overprint growth-related anisotropy, along with cuprian alteration of certain {111} deformation planes.
Resumo:
We completed a synoptic survey of iron, phosphorus, and sulfur concentrations in shallow marine carbonate sediments from south Florida. Total extracted iron concentrations typically were 50 μmol g-1 dry weight (DW) and tended to decrease away from the Florida mainland, whereas total extracted phosphorus concentrations mostly were 10 μmol g-1 DW and tended to decrease from west to east across Florida Bay. Concentrations of reduced sulfur compounds, up to 40 μmol g-1 DW, tended to covary with sediment iron concentrations, suggesting that sulfide mineral formation was iron-limited. An index of iron availability derived from sediment data was negatively correlated with chlorophyll a concentrations in surface waters, demonstrating the close coupling of sediment-water column processes. Eight months after applying a surface layer of iron oxide granules to experimental plots, sediment iron, phosphorus, and sulfur were elevated to a depth of 10 cm relative to control plots. Biomass of the seagrass Thalassia testudinum was not different between control and iron addition plots, but individual shoot growth rates were significantly higher in experimental plots after 8 months. Although the iron content of leaf tissues was significantly higher from iron addition plots, no difference in phosphorus content of T. testudinum leaves was observed. Iron addition altered plant exposure to free sulfide, documented by a significantly higher δ34S of leaf tissue from experimental plots relative to controls. Iron as a buffer to toxic sulfides may promote individual shoot growth, but phosphorus availability to plants still appears to limit production in carbonate sediments.
Resumo:
Ocean Drilling Program (ODP) Leg 193 recovered core from the active PACMANUS hydrothermal field (eastern Manus Basin, Papua New Guinea) that provided an excellent opportunity to study mineralization related to a seafloor hydrothermal system hosted by felsic volcanic rocks. The purpose of this work is to provide a data set of mineral chemistry of the sulfide-oxide mineralization and associated gold occurrence in samples drilled at Sites 1188 and 1189. PACMANUS consists of five active vent sites, namely Rogers Ruins, Roman Ruins, Satanic Mills, Tsukushi, and Snowcap. In this work two sites were studied: Snowcap and Roman Ruins. Snowcap is situated in a water depth of 1670 meters below sea level [mbsl], covers a knoll of dacite-rhyodacite lava, and is characterized by low-temperature diffuse venting. Roman Ruin lies in a water depth of 1693-1710 mbsl, is 150 m across, and contains numerous large, active and inactive, columnar chimneys. Sulfide mineralogy at the Roman Ruins site is dominated by pyrite with lesser amounts of chalcopyrite, sphalerite, pyrrhotite, marcasite, and galena. Sulfide minerals are relatively rare at Snow Cap. These are dominated by pyrite with minor chalcopyrite and sphalerite and traces of pyrrhotite. Native gold has been found in a single sample from Hole 1189B (Roman Ruins). Oxide minerals are represented by Ti magnetite, magnetite, ilmenite, hercynite (Fe spinel), and less abundant Al-Mg rich chromite (average = 10.6 wt% Al2O3 and 5.8 wt% MgO), Fe-Ti oxides, and a single occurrence of pyrophanite (Mn Ti O3). Oxide mineralization is more developed at Snowcap, whereas sulfide minerals are more extensive and show better development at Roman Ruins. The mineralogy was obtained mainly by a detailed optical microscopy study. Oxide mineral identifications were confirmed by X-ray diffraction, and mineral chemistry was determined by electron probe microanalyses.
Resumo:
Hydrothermal vent fluids are highly enriched in iron (Fe) compared to ambient seawater, and organic ligands may play a role in facilitating the transport of some hydrothermal Fe into the open ocean. This is important since Fe is a limiting micronutrient for primary production in large parts of the world's surface ocean. We have investigated the concentration and speciation of Fe in several vent fluid and plume samples from the Nifonea vent field, Coriolis Troughs, New Hebrides Island Arc, South Pacific Ocean using competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-AdCSV) with salicylaldoxime (SA) as the artificial ligand. Our results for total dissolved Fe (dFe) in the buoyant hydrothermal plume samples showed concentrations up to 3.86 µM dFe with only a small fraction between 1.1 and 11.8% being chemically labile. Iron binding ligand concentrations ([L]) were found in µM level with strong conditional stability constants up to logKFeL,Fe3+ of 22.9. Within the non-buoyant hydrothermal plume above the Nifonea vent field, up to 84.7% of the available Fe is chemically labile and [L] concentrations up to 97 nM were measured. [L] was consistently in excess of Felab, indicating that all available Fe is being complexed, which in combination with high Felab values in the non-buoyant plume, signifies that a high fraction of hydrothermal dFe is potentially being transported away from the plume into the surrounding waters, contributing to the global oceanic Fe budget.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08