218 resultados para INNERVATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Patients with cleft lip and palate usually present dental anomalies of number, shape, structure and position in the cleft area and the general dentist is frequently asked to restore or extract those teeth. Considering that several anatomic variations are expected in teeth adjacent to cleft areas and that knowledge of these variations by general dentists is required for optimal treatment, the objectives of this paper are: 1) to describe changes in the innervation pattern of anterior teeth and soft tissue caused by the presence of a cleft, 2) to describe a local anesthetic procedure in unilateral and bilateral clefts, and 3) to provide recommendations to improve anesthetic procedures in patients with cleft lip and palate. The cases of 2 patients are presented: one with complete unilateral cleft lip and palate, and the other with complete bilateral cleft lip and palate. The patients underwent local anesthesia in the cleft area in order to extract teeth with poor bone support. The modified anesthetic procedure, respecting the altered course of nerves in the cleft maxilla and soft tissue alterations at the cleft site, was accomplished successfully and the tooth extraction was performed with no pain to the patients. General dentists should be aware of the anatomic variations in nerve courses in the cleft area to offer high quality treatment to patients with cleft lip and palate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To test the hypothesis that the extraocular muscles (EOMs) of patients with infantile nystagmus have muscular and innervational adaptations that may have a role in the involuntary oscillations of the eyes. Methods: Specimens of EOMs from 10 patients with infantile nystagmus and postmortem specimens from 10 control subjects were prepared for histologic examination. The following variables were quantified: mean myofiber cross-sectional area, myofiber central nucleation, myelinated nerve density, nerve fiber density, and neuromuscular junction density. Results: In contrast to control EOMs, infantile nystagmus EOMs had significantly more centrally nucleated myofibers, consistent with cycles of degeneration and regeneration. The EOMs of patients with nystagmus also had a greater degree of heterogeneity in myofiber size than did those of controls, with no difference in mean myofiber cross-sectional area. Mean myelinated nerve density, nerve fiber density, and neuromuscular junction density were also significantly decreased in infantile nystagmus EOMs. Conclusions: The EOMs of patients with infantile nystagmus displayed a distinct hypoinnervated phenotype. This represents the first quantification of changes in central nucleation and myofiber size heterogeneity, as well as decreased myelinated nerve, nerve fiber, and neuromuscular junction density. These results suggest that deficits in motor innervation are a potential basis for the primary loss of motor control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to identify immunoreactive neuropeptide Y (NPY) and calcitonin gene-related peptide (CGRP) neurons in the autonomic and sensory ganglia, specifically neurons that innervate the rat temporomandibular joint (TMJ). A possible variation between the percentages of these neurons in acute and chronic phases of carrageenan-induced arthritis was examined. Retrograde neuronal tracing was combined with indirect immunofluorescence to identify NPY-immuno-reactive (NPY-IR) and CGRP-immunoreactive (CGRP-IR) neurons that send nerve fibers to the normal and arthritic temporomandibular joint. In normal joints, NPY-IR neurons constitute 78 +/- 3%, 77 +/- 6% and 10 +/- 4% of double-labeled nucleated neuronal profile originated from the superior cervical, stellate and otic ganglia, respectively. These percentages in the sympathetic ganglia were significantly decreased in acute (58 +/- 2% for superior cervical ganglion and 58 +/- 8% for stellate ganglion) and chronic (60 +/- 2% for superior cervical ganglion and 59 +/- 15% for stellate ganglion) phases of arthritis, while in the otic ganglion these percentages were significantly increased to 19 +/- 5% and 13 +/- 3%, respectively. In the trigeminal ganglion, CGRP-IR neurons innervating the joint significantly increased from 31 +/- 3% in normal animals to 54 +/- 2% and 49 +/- 3% in the acute and chronic phases of arthritis, respectively. It can be concluded that NPY neurons that send nerve fibers to the rat temporomandibular joint are located mainly in the superior cervical, stellate and otic ganglia. Acute and chronic phases of carrageenan-induced arthritis lead to an increase in the percentage of NPY-IR parasympathetic and CGRP-IR sensory neurons and to a decrease in the percentage of NPY-IR sympathetic neurons related to TMJ innervation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O músculo diafragma, encontrado apenas nos mamíferos, é o principal músculo no processo respiratório, servindo de fronteira entre as cavidades torácica e abdominal. Sua importância também ganha destaque em pesquisas realizadas no âmbito dos enxertos, empregando-se diversos tipos de membranas biológicas para o reparo de defeitos diafragmáticos, os quais podem gerar hérnias diafragmáticas. Apesar de muitos estudos já conduzidos para com os primatas não humanos, especialmente no que tange a espécie do novo mundo Callithrix jacchus (Sagui-de-tufo-branco), oriundo do nordeste brasileiro, as pesquisas envolvendo o uso do diafragma em tal espécie é inexistente. Deste modo objetivou-se caracterizar a morfologia e a biometria do diafragma na espécie Callithrix jacchus de ambos os sexos, analisando possíveis divergências estruturais entre machos e fêmeas. Para tal foram utilizados quatros animais, 2 machos e 2 fêmeas, adultos, que vieram a óbito por causas naturais, provenientes de um criadouro comercial. Após fixação em solução de formaldeído 10% os animais foram devidamente dissecados para fotodocumentação e em seguida o diafragma coletado para efetuação da biometria (comprimento e largura) com o uso de um paquímetro e para o processamento histológico por meio da coloração de hematoxilina-eosina e tricrômio de masson, da porção muscular. As mensurações feitas permitiram concluir que não houve diferenças signifcativas entre machos e femeas. A topografia e a presença de três aberturas (forame da veia cava caudal, hiato aórtico e esofágico) na extensão do diafragma corroboram com descrições na literatura classica para outros mamíferos. A presença de um centro tendíneo em "V" difere do encontrado para animais como o peixe-boi e porquinho-da-india, mas é similar ao encontrado para o gambá-de-orelhas-brancas e rato albino. No que diz respeito aos achados histológicos conclui-se que as fibras musculares estão dispostas de forma organizada, apresentam diâmetro grande e núcleos basais, tendo, portanto, características similares do músculo estriado esquelético tanto nos animais machos como nas fêmeas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to evaluate the effects of caloric restriction (CR) on myenteric neurons in the duodenum of Wistar rats during aging. Thirty rats were divided into three groups: the C group (six-month-old animals that were fed a normal diet from weaning until six months of age), the SR group (18-month-old animals that were fed a normal diet from weaning until 18 months of age) and the CR group (18-month-old animals that were fed a 30% CR diet after six months of age). After 12 months, the animals were euthanized. Whole-mount preparations of the duodenums were either stained with Giemsa or underwent NADPH-diaphorase histochemistry to determine the general myenteric neuron population and the nitrergic neuron subpopulation (NADPH-d +), respectively. The NADPH-d-negative (NADPH-d -) neuron population was estimated based on the difference between the Giemsa-stained and NADPH-d + neurons. The neurons were counted, and the cell body areas were measured. Aging was associated with neuronal loss in the SR group, which was minimized by caloric restriction in the CR group. The density (mm(2)) of the Giemsa-stained neurons was higher in the SR group (79.09 +/- 6.25) than in the CR (92.37 +/- 11.6) and C (111.68 +/- 15.26) groups. The density of the NADPH-d + neurons was higher in the SR group (44.90 +/- 5.88) than in the C (35.75 +/- 1.6) and RC (39.14 +/- 7.02) groups. The density of NADPH-d - neurons was higher in the CR (49.73 +/- 12.08) and C (75.64 +/- 17.05) groups than in the SR group (33.82 +/- 4.5). In the C group, 32% and 68% of the Giemsa-stained myenteric neurons were NADPH-d + or NADPH-d -, respectively. With aging (SR group), the percentage of nitrergic neurons (56.77%) increased, whereas the percentage of NADPH-d - neurons (43.22%) decreased. In the CR group, the change in the percentage of nitrergic (42.37%) and NADPH-d - (57.62%) neurons was lower. As NADPH-d - neurons will be mostly cholinergic neurons, CR appears to reduce the loss of cholinergic neurons during aging. The cell body dimensions (mu m(2)) were not altered by aging or CR. Thus. CR had a protective effect on myenteric neurons during aging. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies using morphine-treated dams reported a role for the rostral lateral periaqueductal gray (rIPAG) in the behavioral switching between nursing and insect hunting, likely to depend on an enhanced seeking response to the presence of an appetitive rewarding cue (i.e., the roach). To elucidate the neural mechanisms mediating such responses, in the present study, we first observed how the rIPAG influences predatory hunting in male rats. Our behavioral observations indicated that bilateral rIPAG NMDA lesions dramatically interfere with prey hunting, leaving the animal without chasing or attacking the prey, but do not seem to affect the general levels of arousal, locomotor activity and regular feeding. Next, using Phaseolus vulgaris-leucoagglutinin (PHA-L), we have reviewed the rIPAG connection pattern, and pointed out a particularly dense projection to the hypothalamic orexinergic cell group. Double labeled PHA-L and orexin sections showed an extensive overlap between PHA-L labeled fibers and orexin cells, revealing that both the medial/perifornical and lateral hypothalamic orexinergic cell groups receive a substantial innervation from the rIPAG. We have further observed that both the medial/perifornical and lateral hypothalamic orexinergic cell groups up-regulate Fos expression during prey hunting, and that rIPAG lesions blunted this Fos increase only in the lateral hypothalamic, but not in the medial/perifornical, orexinergic group, a finding supposedly associated with the lack of motivational drive to actively pursue the prey. Overall, the present results suggest that the rIPAG should exert a critical influence on reward seeking by activating the lateral hypothalamic orexinergic cell group. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Since noradrenergic innervation was described in the ovarian follicle, the actions of the intraovarian catecholaminergic system have been the focus of a variety of studies. We aimed to determine the gonadotropin-independent effects of the catecholamine norepinephrine (NE) in the steroid hormone profile of a serum-free granulosa cell (GC) culture system in the context of follicular development and dominance. Methods: Primary bovine GCs were cultivated in a serum-free, chemically defined culture system supplemented with 0.1% polyvinyl alcohol. The culture features were assessed by hormone measurements and ultrastructural characteristics of GCs. Results: GCs produced increasing amounts of estradiol and pregnenolone for 144h and maintained ultrastructural features of healthy steroidogenic cells. Progesterone production was also detected, although it significantly increased only after 96h of culture. There was a highly significant positive correlation between estradiol and pregnenolone production in high E2-producing cultures. The effects of NE were further evaluated in a dose response study. The highest tested concentration of NE (10 (-7) M) resulted in a significant increase in progesterone production, but not in estradiol or pregnenolone production. The specificity of NE effects on progesterone productio n was further investigated by incubating GCs with propranolol (10 (-8) M), a non-selective beta-adrenergic antagonist. Conclusions: The present culture system represents a robust model to study the impact of intrafollicular factors, such as catecholamines, in ovarian steroidogenesis and follicular development. The results of noradrenergic effects in the steroidogenesis of GC have implications on physiological follicular fate and on certain pathological ovarian conditions such as cyst formation and anovulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Down syndrome (DS) is a genetic pathology characterized by brain hypotrophy and severe cognitive disability. Although defective neurogenesis is an important determinant of cognitive impairment, a severe dendritic pathology appears to be an equally important factor. It is well established that serotonin plays a pivotal role both on neurogenesis and dendritic maturation. Since the serotonergic system is profoundly altered in the DS brain, we wondered whether defects in the hippocampal development can be rescued by treatment with fluoxetine, a selective serotonin reuptake inhibitor and a widely used antidepressant drug. A previous study of our group showed that fluoxetine fully restores neurogenesis in the Ts65Dn mouse model of DS and that this effect is accompanied by a recovery of memory functions. The goal of the current study was to establish whether fluoxetine also restores dendritic development and maturation. In mice aged 45 days, treated with fluoxetine in the postnatal period P3-P15, we examined the dendritic arbor of newborn and mature granule cells of the dentate gyrus (DG). The granule cells of trisomic mice had a severely hypotrophic dendritic arbor, fewer spines and a reduced innervation than euploid mice. Treatment with fluoxetine fully restored all these defects. Moreover the impairment of excitatory and inhibitory inputs to CA3 pyramidal neurons was fully normalized in treated trisomic mice, indicating that fluoxetine can rescue functional connectivity between the DG and CA3. The widespread beneficial effects of fluoxetine on the hippocampal formation suggest that early treatment with fluoxetine can be a suitable therapy, possibly usable in humans, to restore the physiology of the hippocampal networks and, hence, memory functions. These findings may open the way for future clinical trials in children and adolescents with DS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eine wichtige Voraussetzung für das Verständnis der Spezifizierungsmechanismen unterschiedlicher Zelltypen im embryonalen Gehirn ist die detaillierte Kenntnis des neuroektodermalen Ursprungs seiner neuralen Stammzellen (Neuroblasten, NB), sowie der Morphologie und zellulären Komposition der daraus hervorgehenden Zellstammbäume (ZSBe). In der vorliegenden Arbeit wurde die Entstehung und Topologie von 21 embryonalen ZSBen im anteriorsten Gehirnteil, dem Protocerebrum, charakterisiert, mit besonderem Fokus auf solche ZSBe, die den Pilzkörper konstituieren. Pilzkörper sind prominente, paarige Neuropilzentren, die eine wichtige Rolle bei der Verarbeitung olfaktorischer Informationen, beim Lernen und bei der Gedächtnisbildung spielen. In dieser Arbeit konnte erstmalig die Embryonalentwicklung der Pilzkörper ab dem Zeitpunkt der Entstehung ihrer NBen im procephalen Neuroektoderm (pNE), bis hin zum funktionellen Gehirnzentrum in der frühen Larve auf Ebene individueller ZSBe bzw. einzelner Neurone beschrieben werden. Mittels der klonalen Di-Markierungstechnik konnte ich zeigen, dass die vier NBen der Pilzkörper (PKNBen) jeder Gehirnhemisphäre innerhalb des NE aus dem ventralen Bereich der mitotischen Domäne B (δB) hervorgehen. Ein in diesem Bereich liegendes proneurales Feld beherbergt etwa 10-12 Zellen, die alle das Potential haben sich zu PKNBen zu entwickeln. Des Weiteren zeigen diese Untersuchungen, dass die PKNBen (und weitere NBen der δB) aus benachbarten NE-Zellen hervorgehen. Dieser Befund impliziert, dass der Mechanismus der lateralen Inhibition in diesem Bereich des NE keine Rolle spielt. Weiterhin stellte sich heraus, dass jeder PKNB eine ihm eigene Position im sich entwickelnden Pilzkörperkortex besetzt und eine spezifische Kombination der Transkriptionsfaktoren Dachshund, Eyeless und Retinal homeobox exprimiert. Dadurch konnte jeder der vier PKNBen in den betreffenden frühembryonalen NB-Karten einem der ca. 105 NBen pro Gehirnhemisphäre zugeordnet werden. Die PKNBen bringen individuelle ZSBe hervor, die Pilzkörper-intrinsische γ-Neurone beinhalten, aber auch jeweils charakteristische Sets an Interneuronen, die nicht am Aufbau des Pilzkörpers beteiligt sind. Diese verschiedenen Neuronentypen entstehen in einer zeitlichen Abfolge, die für jeden PKNBen spezifisch ist. Ihre embryonalen ZSBe sind aber nicht nur durch individuelle Sets an frühgeborenen ni-Neuronen charakterisiert, sondern auch durch spezifische Unterschiede in der Anzahl ihrer γ-Neurone, welche jedoch, wie ich zeigen konnte, nicht durch Apoptose reguliert wird. Weiterhin konnte ich zeigen, dass γ-Neurone, in einer PKNB Klon-abhängigen Weise, spezifische Unterschiede in der räumlich-zeitlichen Innervation des Pedunkels, der Calyx und der Loben aufweisen. Im Weiteren wurde die Expression verschiedener molekularer Marker in diesen ZSBen charakterisiert, u.a. die Expression verschiedener Gal4-Fliegenstämme, und solcher Transkriptionsfaktoren, die eine wichtige Rolle bei der temporären Spezifizierung im VNS spielen. So werden hb, Kr, pdm1 auch in Nachkommenzellen der PKNBen exprimiert und haben möglicherweise eine Funktion bei ihrer temporären Spezifizierung. Diese Arbeit gibt auch erstmalig Einblick in die vollständige spätembryonale/frühlarvale Morphologie anderer protocerebraler Gehirnzellstammbäume aus δB und δ1. Die Beschreibungen dieser ZSBe beinhalten Angaben zu deren Zellzahl, Zelltypen, der Lage der ZSBe im Gehirn, axonalen/dendritischen Projektionsmustern sowie dem Entstehungsort des NBen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Im Fokus dieser Studie stehen die zu den Gliazellen zählenden OPC, sowie das von diesen exprimierte Typ-1 Membranprotein NG2. Dieses wird auf eine Prozessierung durch α- und γ-Sekretase, in Analogie zu Proteinen wie Notch oder APP, untersucht.rnEine solche Prozessierung ginge mit zusätzlichen intrazellulären Spaltprodukten neben der bekannten Ektodomäne einher. Da OPC mit dem Neuronalen Netzwerk durch synaptische Innervierungen in Verbindung stehen, stellt sich die Frage, ob diese mit der Spaltung von NG2 in Verbindung gebracht werden können. Dazu käme mechanistisch beispielsweise eine aktivitätsabhängige Regulierung der Proteolyse, wie sie jüngst für das neuronale synaptische cell adhesion molecule Neuroligin gezeigt werden konnte, in Frage. Zudem werden eine physiologische Rolle der NG2 Ektodomäne bzw. der möglichen intrazellulären Fragmente untersuchen. Insbesondere potentielle neuromodulatorische Funktionen sind hier von Interesse, da diese die OPC tiefer in das Neuronale Netzwerk integrieren würden. Die Existenz eines NG2 Homologes in D. melanogaster, wirft weiterhin die Frage auf, in wie weit diese Mechanismen in diesem Modellsystem konserviert sind.rnIn Analogie zur Lokalisierung von Markerproteinen an Neuron-Neuron Synapsen in vivo, ergibt sich die Frage ob sich die synaptischen Verbindungen zwischen Neuronen und OPC in ähnlicher Weise darstellen lassen.rnEin Charakteristikum von OPC ist die Teilungsaktivität in sich entwickelnden und adulten Säugern. Zudem gibt es Evidenzen für direkte funktionelle Verknüpfungen zwischen dem NG2 Protein und dem Teilungsmodus der OPC. Deshalb war ein weiteres Ziel mögliche Änderungen in der Zellteilung der OPC, die mit dem NG2 Protein in Verbindung stehen könnten, in NG2 -/- Mäusen zu untersuchen.rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Widespread central hypersensitivity is present in chronic pain and contributes to pain and disability. According to animal studies, expansion of receptive fields of spinal cord neurons is involved in central hypersensitivity. We recently developed a method to quantify nociceptive receptive fields in humans using spinal withdrawal reflexes. Here we hypothesized that patients with chronic pelvic pain display enlarged reflex receptive fields. Secondary endpoints were subjective pain thresholds and nociceptive withdrawal reflex thresholds after single and repeated (temporal summation) electrical stimulation. 20 patients and 25 pain-free subjects were tested. Electrical stimuli were applied to 10 sites on the foot sole for evoking reflexes in the tibialis anterior muscle. The reflex receptive field was defined as the area of the foot (fraction of the foot sole) from which a muscle contraction was evoked. For the secondary endpoints, the stimuli were applied to the cutaneous innervation area of the sural nerve. Medians (25-75 percentiles) of fraction of the foot sole in patients and controls were 0.48 (0.38-0.54) and 0.33 (0.27-0.39), respectively (P=0.008). Pain and reflex thresholds after sural nerve stimulation were significantly lower in patients than in controls (P<0.001 for all measurements). This study provides for the first time evidence for widespread expansion of reflex receptive fields in chronic pain patients. It thereby identifies a mechanism involved in central hypersensitivity in human chronic pain. Reverting the expansion of nociceptive receptive fields and exploring the prognostic meaning of this phenomenon may become future targets of clinical research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The retromolar canal is an anatomic structure of the mandible with clinical importance. This canal branches off from the mandibular canal behind the third molar and travels to the retromolar foramen in the retromolar fossa. The retromolar canal might conduct accessory innervation to the mandibular molars or contain an aberrant buccal nerve.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIM: To identify factors that potentially influence urethral sensitivity in women. PATIENTS AND METHODS: The current perception threshold was measured by double ring electrodes in the proximal and distal urethra in 120 women. Univariate analysis using Kaplan-Meier models and multivariate analysis applying Cox regressions were performed to identify factors influencing urethral sensitivity in women. RESULTS: In univariate and multivariate analysis, women who had undergone radical pelvic surgery (radical cystectomy n = 12, radical rectal surgery n = 4) showed a significantly (log rank test P < 0.0001) increased proximal urethral sensory threshold compared to those without prior surgery (hazard ratio (HR) 4.17, 95% confidence interval (CI) 2.04-8.51), following vaginal hysterectomy (HR 4.95, 95% CI 2.07-11.85), abdominal hysterectomy (HR 5.96, 95% CI 2.68-13.23), or other non-pelvic surgery (HR 4.86, 95% CI 2.24-10.52). However, distal urethral sensitivity was unaffected by any form of prior surgery. Also other variables assessed, including age, concomitant diseases, urodynamic diagnoses, functional urethral length, and maximum urethral closure pressure at rest had no influence on urethral sensitivity in univariate as well as in multivariate analysis. CONCLUSIONS: Increased proximal but unaffected distal urethral sensory threshold after radical pelvic surgery in women suggests that the afferent nerve fibers from the proximal urethra mainly pass through the pelvic plexus which is prone to damage during radical pelvic surgery, whereas the afferent innervation of the distal urethra is provided by the pudendal nerve. Better understanding the innervation of the proximal and distal urethra may help to improve surgical procedures, especially nerve sparing techniques. Neurourol. Urodynam. (c) 2006 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unraveling intra- and inter-cellular signaling networks managing cell-fate control, coordinating complex differentiation regulatory circuits and shaping tissues and organs in living systems remain major challenges in the post-genomic era. Resting on the laurels of past-century monolayer culture technologies, the cell culture community has only recently begun to appreciate the potential of three-dimensional mammalian cell culture systems to reveal the full scope of mechanisms orchestrating the tissue-like cell quorum in space and time. Capitalizing on gravity-enforced self-assembly of monodispersed primary embryonic mouse cells in hanging drops, we designed and characterized a three-dimensional cell culture model for ganglion-like structures. Within 24h, a mixture of mouse embryonic fibroblasts (MEF) and cells, derived from the dorsal root ganglion (DRG) (sensory neurons and Schwann cells) grown in hanging drops, assembled to coherent spherical microtissues characterized by a MEF feeder core and a peripheral layer of DRG-derived cells. In a time-dependent manner, sensory neurons formed a polar ganglion-like cap structure, which coordinated guided axonal outgrowth and innervation of the distal pole of the MEF feeder spheroid. Schwann cells, present in embryonic DRG isolates, tended to align along axonal structures and myelinate them in an in vivo-like manner. Whenever cultivation exceeded 10 days, DRG:MEF-based microtissues disintegrated due to an as yet unknown mechanism. Using a transgenic MEF feeder spheroid, engineered for gaseous acetaldehyde-inducible interferon-beta (ifn-beta) production by cotransduction of retro-/ lenti-viral particles, a short 6-h ifn-beta induction was sufficient to rescue the integrity of DRG:MEF spheroids and enable long-term cultivation of these microtissues. In hanging drops, such microtissues fused to higher-order macrotissue-like structures, which may pave the way for sophisticated bottom-up tissue engineering strategies. DRG:MEF-based artificial micro- and macrotissue design demonstrated accurate key morphological aspects of ganglions and exemplified the potential of self-assembled scaffold-free multicellular micro-/macrotissues to provide new insight into organogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of sympathetic innervation in regulation of thyroid function is incompletely understood. We, therefore, carried out studies in rats utilizing techniques of norepinephrine turnover to assess thyroid sympathetic activity in vivo. Thyroidal sympathetic activity was increased 95% by exposure to cold (4 degrees C), 42% by chronic ingestion of an iodine-deficient diet, and 32% in rats fed a goitrogenic diet (low-iodine diet supplemented with propylthiouracil). In addition, fasting for 2 days reduced sympathetic nervous system activity in thyroid by 38%. Thyroid growth and 125I uptake were also compared in intact and decentralized hemithyroids obtained from animals subjected to unilateral superior cervical ganglion decentralization. Unilateral superior cervical ganglion decentralization led to a reduction in thyroid weight, in 125I uptake by thyroid tissue, and in TSH-induced stimulation of 125I uptake in decentralized hemithyroids. These results suggest that sympathetic activity in thyroid contributes to gland enlargement and may modulate tissue responsiveness to TSH.