289 resultados para IMPERFECTIONS
Resumo:
Perfect state transfer is possible in modulated spin chains [Phys. Rev. Lett. 92, 187902 (2004)], imperfections, however, are likely to corrupt the state transfer. We study the robustness of this quantum communication protocol in the presence of disorder both in the exchange couplings between the spins and in the local magnetic field. The degradation of the fidelity can be suitably expressed, as a function of the level of imperfection and the length of the chain, in a scaling form. In addition the time signal of fidelity becomes fractal. We further characterize the state transfer by analyzing the spectral properties of the Hamiltonian of the spin chain.
Resumo:
In this paper we present an approach to quantum cloning with unmodulated spin networks. The cloner is realized by a proper design of the network and a choice of the coupling between the qubits. We show that in the case of phase covariant cloner the XY coupling gives the best results. In the 1 -> 2 cloning we find that the value for the fidelity of the optimal cloner is achieved, and values comparable to the optimal ones in the general N -> M case can be attained. If a suitable set of network symmetries are satisfied, the output fidelity of the clones does not depend on the specific choice of the graph. We show that spin network cloning is robust against the presence of static imperfections. Moreover, in the presence of noise, it outperforms the conventional approach. In this case the fidelity exceeds the corresponding value obtained by quantum gates even for a very small amount of noise. Furthermore, we show how to use this method to clone qutrits and qudits. By means of the Heisenberg coupling it is also possible to implement the universal cloner although in this case the fidelity is 10% off that of the optimal cloner.
Resumo:
Finite Element simulations and mechanical tests are undertaken to assess the impact of weld joint location on stiffened panel static strength. An upper wing cover panel, with a manufacturing process of welding multiple near-net-shape multi-stiffener extrusions with a final net-shape machining phase is investigated. The 7000 series aluminium alloy extrusions and skin bay longitudinal friction stir butt welds are examined. Geometric imperfections exhibit the greatest influence on panel collapse, thus for static strength design the selection of weld joint location should minimise imperfection generation. Moreover the analysis demonstrates limited impact on panel collapse strength when an optimised welding process is employed. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Objective: The aim of this research is to use finite element analysis (FEA) to quantify the effect of the sample shape and the imperfections induced during the manufacturing process of samples on the bond strength and modes of failure of dental adhesive systems through microtensile test. Using the FEA prediction for individual parameters effect, estimation of expected variation and spread of the microtensile bond strength results for different sample geometries is made. Methods: The estimated stress distributions for three different sample shapes, hourglass, stick and dumbbell predicted by FEA are used to predict the strength for different fracture modes. Parameters such as the adhesive thickness, uneven interface of the adhesive and composite and dentin, misalignment of axis of loading, the existence of flaws such as induced cracks during shaping the samples or bubbles created during application of the adhesive are considered. Microtensile experiments are performed simultaneously to measure bond strength and modes of failure. These are compared with the FEA results. Results: The relative bonding strength and its standard deviation for the specimens with different geometries measured through the microtensile tests confirm the findings of the FEA. The hourglass shape samples show lower tensile bond strength and standard deviation compared to the stick and dumbbell shape samples. ANOVA analysis confirms no significant difference between dumbbell and stick geometry results, and major differences of these two geometries compared to hourglass shape measured values. Induced flaws in the adhesive and misalignment of the angle of application of load have significant effect on the microtensile bond strength. Using adhesive with higher modulus the differences between the bond strength of the three sample geometries increase. Significance: The result of the research clarifies the importance of the sample geometry chosen in measuring the bond strength. It quantifies the effect of the imperfections on the bond strength for each of the sample geometries through a systematic and all embracing study. The results explain the reasons of the large spread of the microtensile test results reported by various researchers working in different labs and the need for standardization of the test method and sample shape used in evaluation of the dentin-adhesive bonding system. © 2007 Academy of Dental Materials.
Resumo:
We investigate the violation of local realism in Bell tests involving homodyne measurements performed on multimode continuous-variable states. By binning the measurement outcomes in an appropriate way, we prove that the Mermin-Klyshko inequality can be violated by an amount that grows exponentially with the number of modes. Furthermore, the maximum violation allowed by quantum mechanics can be attained for any number of modes, albeit requiring a quantum state whose generation is hardly practicable. Interestingly, this exponential increase of the violation holds true even for simpler states, such as multipartite GHZ states. The resulting benefit of using more modes is shown to be significant in practical multipartite Bell tests by analyzing the increase of the robustness to noise with the number of modes. In view of the high efficiency achievable with homodyne detection, our results thus open a possible way to feasible loophole-free Bell tests that are robust to experimental imperfections. We provide an explicit example of a three-mode state (a superposition of coherent states) which results in a significantly high violation of the Mermin-Klyshko inequality (around 10%) with homodyne measurements.
Resumo:
This paper considers a non-cooperative network formation game where identity is introduced as a single dimension to capture the characteristics of a player in the network. Players access to the benefits from the link through direct and indirect connections. We consider cases where cost of link formation paid by the initiator. Each player is allowed to choose their commitment level to their identities. The cost of link formation decreases as the players forming the link share the same identity and higher commitment levels. We then introduce link imperfections to the model. We characterize the Nash networks and we find that the set of Nash networks are either singletons with no links formed or separated blocks or components with mixed blocks or connected.
Resumo:
Massive multiple-input multiple-output (MIMO) systems are cellular networks where the base stations (BSs) are equipped with unconventionally many antennas, deployed on colocated or distributed arrays. Huge spatial degrees-of-freedom are achieved by coherent processing over these massive arrays, which provide strong signal gains, resilience to imperfect channel knowledge, and low interference. This comes at the price of more infrastructure; the hardware cost and circuit power consumption scale linearly/affinely with the number of BS antennas N. Hence, the key to cost-efficient deployment of large arrays is low-cost antenna branches with low circuit power, in contrast to today’s conventional expensive and power-hungry BS antenna branches. Such low-cost transceivers are prone to hardware imperfections, but it has been conjectured that the huge degrees-of-freedom would bring robustness to such imperfections. We prove this claim for a generalized uplink system with multiplicative phasedrifts, additive distortion noise, and noise amplification. Specifically, we derive closed-form expressions for the user rates and a scaling law that shows how fast the hardware imperfections can increase with N while maintaining high rates. The connection between this scaling law and the power consumption of different transceiver circuits is rigorously exemplified. This reveals that one can make the circuit power increase as p N, instead of linearly, by careful circuit-aware system design.
Resumo:
Massive multiple-input multiple-output (MIMO) systems are cellular networks where the base stations (BSs) are equipped with unconventionally many antennas. Such large antenna arrays offer huge spatial degrees-of-freedom for transmission optimization; in particular, great signal gains, resilience to imperfect channel knowledge, and small inter-user interference are all achievable without extensive inter-cell coordination. The key to cost-efficient deployment of large arrays is the use of hardware-constrained base stations with low-cost antenna elements, as compared to today's expensive and power-hungry BSs. Low-cost transceivers are prone to hardware imperfections, but it has been conjectured that the excessive degrees-of-freedom of massive MIMO would bring robustness to such imperfections. We herein prove this claim for an uplink channel with multiplicative phase-drift, additive distortion noise, and noise amplification. Specifically, we derive a closed-form scaling law that shows how fast the imperfections increase with the number of antennas.
Resumo:
We report on a pilot study of a novel observing technique, defocussed transmission spectroscopy, and its application to the study of exoplanet atmospheres using ground-based platforms. Similar to defocussed photometry, defocussed transmission spectroscopy has an added advantage over normal spectroscopy in that it reduces systematic errors due to flat-fielding, PSF variations, slit-jaw imperfections and other effects associated with ground-based observations. For one of the planetary systems studied, WASP-12b, we report a tentative detection of additional Na absorption of 0.12+/-0.03[+0.03]% during transit using a 2A wavelength mask. After consideration of a systematic that occurs mid-transit, it is likely that the true depth is actually closer to 0.15%. This is a similar level of absorption reported in the atmosphere of HD209458b (0.135+/-0.017%, Snellen et al. 2008). Finally, we outline methods that will improve the technique during future observations, based on our findings from this pilot study.
Resumo:
Exploiting multidimensional quantum walks as feasible platforms for quantum computation and quantum simulation attracts constantly growing attention from a broad experimental physics community. Here, we propose a two-dimensional quantum walk scheme with a single-qubit coin that presents, in the considered regimes, a strong localizationlike effect on the walker. The result could provide new possible directions for the implementation of quantum algorithms or from the point of view of quantum simulation. We characterize the localizationlike effect in terms of the parameters of a step-dependent qubit operation that acts on the coin space after any standard coin operation, showing that a proper choice can guarantee a nonnegligible probability of finding the walker in the origin even for large times. We finally discuss the robustness to imperfections, a qualitative relation with coherences behavior, and possible experimental realizations of this model with the current state-of-the-art settings.
Resumo:
In this paper, an evaluation of unwanted effects in Multiple Input Multiple Output (MIMO) transmitters is described. Complete 2×2 and 4×4 MIMO Orthogonal Frequency Division Multiplex (OFDM) transmitters are simulated for the purpose of quantifying all potential unwanted effects such as Power Amplifiers' (PAs) nonlinearity, linear and nonlinear crosstalk, and IQ modulator imperfections. An experimental analysis of a 2×2 MIMO transmitter using two-tones and WCDMA signal is presented.
Resumo:
To boost logic density and reduce per unit power consumption SRAM-based FPGAs manufacturers adopted nanometric technologies. However, this technology is highly vulnerable to radiation-induced faults, which affect values stored in memory cells, and to manufacturing imperfections. Fault tolerant implementations, based on Triple Modular Redundancy (TMR) infrastructures, help to keep the correct operation of the circuit. However, TMR is not sufficient to guarantee the safe operation of a circuit. Other issues like module placement, the effects of multi- bit upsets (MBU) or fault accumulation, have also to be addressed. In case of a fault occurrence the correct operation of the affected module must be restored and/or the current state of the circuit coherently re-established. A solution that enables the autonomous restoration of the functional definition of the affected module, avoiding fault accumulation, re-establishing the correct circuit state in real-time, while keeping the normal operation of the circuit, is presented in this paper.
Resumo:
Confocal and two-photon microcopy have become essential tools in biological research and today many investigations are not possible without their help. The valuable advantage that these two techniques offer is the ability of optical sectioning. Optical sectioning makes it possible to obtain 3D visuahzation of the structiu-es, and hence, valuable information of the structural relationships, the geometrical, and the morphological aspects of the specimen. The achievable lateral and axial resolutions by confocal and two-photon microscopy, similar to other optical imaging systems, are both defined by the diffraction theorem. Any aberration and imperfection present during the imaging results in broadening of the calculated theoretical resolution, blurring, geometrical distortions in the acquired images that interfere with the analysis of the structures, and lower the collected fluorescence from the specimen. The aberrations may have different causes and they can be classified by their sources such as specimen-induced aberrations, optics-induced aberrations, illumination aberrations, and misalignment aberrations. This thesis presents an investigation and study of image enhancement. The goal of this thesis was approached in two different directions. Initially, we investigated the sources of the imperfections. We propose methods to eliminate or minimize aberrations introduced during the image acquisition by optimizing the acquisition conditions. The impact on the resolution as a result of using a coverslip the thickness of which is mismatched with the one that the objective lens is designed for was shown and a novel technique was introduced in order to define the proper value on the correction collar of the lens. The amoimt of spherical aberration with regard to t he numerical aperture of the objective lens was investigated and it was shown that, based on the purpose of our imaging tasks, different numerical apertures must be used. The deformed beam cross section of the single-photon excitation source was corrected and the enhancement of the resolution and image quaUty was shown. Furthermore, the dependency of the scattered light on the excitation wavelength was shown empirically. In the second part, we continued the study of the image enhancement process by deconvolution techniques. Although deconvolution algorithms are used widely to improve the quality of the images, how well a deconvolution algorithm responds highly depends on the point spread function (PSF) of the imaging system applied to the algorithm and the level of its accuracy. We investigated approaches that can be done in order to obtain more precise PSF. Novel methods to improve the pattern of the PSF and reduce the noise are proposed. Furthermore, multiple soiu'ces to extract the PSFs of the imaging system are introduced and the empirical deconvolution results by using each of these PSFs are compared together. The results confirm that a greater improvement attained by applying the in situ PSF during the deconvolution process.
Resumo:
Dans cet article nous passons en revue les différentes théories économiques traitant du travail des enfants. Nous distinguons deux analyses différentes du travail des enfants. Une première analyse se référant à la pauvreté, étudie les impacts sur le bien-être du ménage d’une décision parentale de mettre les enfants au travail. De ce fait, la pauvreté est l’unique facteur explicatif du travail des enfants. Dans cette approche, le ménage arbitre entre offrir du loisir aux enfants ou les mettre au travail, en fonction du revenu parental. Dans la deuxième analyse, l’arbitrage ne s’opère plus en terme de loisir et travail mais en terme d’éducation et travail. Selon cette approche, le travail des enfants est facteur non seulement de la pauvreté mais aussi des imperfections du marché des capitaux. La décision parentale de mettre les enfants au travail a un impact sur le bien-être futur de ces enfants. Ces deux analyses montrent que le travail des enfants conduit à une situation de trappe à pauvreté.