977 resultados para Hysteretic Down-Sampling
Resumo:
In this paper we have used simulations to make a conjecture about the coverage of a t-dimensional subspace of a d-dimensional parameter space of size n when performing k trials of Latin Hypercube sampling. This takes the form P(k,n,d,t) = 1 - e^(-k/n^(t-1)). We suggest that this coverage formula is independent of d and this allows us to make connections between building Populations of Models and Experimental Designs. We also show that Orthogonal sampling is superior to Latin Hypercube sampling in terms of allowing a more uniform coverage of the t-dimensional subspace at the sub-block size level. These ideas have particular relevance when attempting to perform uncertainty quantification and sensitivity analyses.
Resumo:
To The ratcheting behavior of high-strength rail steel (Australian Standard AS1085.1) is studied in this work for the purpose of predicting wear and damage to the rail surface. Historically, researchers have used circular test coupons obtained from the rail head to conduct cyclic load tests, but according to hardness profile data, considerable variation exists across the rail head section. For example, the induction-hardened rail (AS1085.1) shows high hardness (400-430 HV100) up to four-millimeters into the rail head’s surface, but then drops considerably beyond that. Given that cyclic test coupons five millimeters in diameter at the gauge area are usually taken from the rail sample, there is a high probability that the original surface properties of the rail do not apply across the entire test coupon and, therefore, data representing only average material properties are obtained. In the literature, disks (47 mm in diameter) for a twin-disk rolling contact test machine have been obtained directly from the rail sample and used to validate rolling contact fatigue wear models. The question arises: How accurate are such predictions? In this research paper, the effect of rail sampling position on the ratcheting behavior of AS1085.1 rail steel was investigated using rectangular shaped specimens. Uniaxial stress-controlled tests were conducted with samples obtained at four different depths to observe the ratcheting behaviour of each. Micro-hardness measurements of the test coupons were carried out to obtain a constitutive relationship to predict the effect of depth on the ratcheting behaviour of the rail material. This work ultimately assists the selection of valid material parameters for constitutive models in the study of rail surface ratcheting.
Resumo:
Drivers behave in different ways, and these different behaviors are a cause of traffic disturbances. A key objective for simulation tools is to correctly reproduce this variability, in particular for car-following models. From data collection to the sampling of realistic behaviors, a chain of key issues must be addressed. This paper discusses data filtering, robustness of calibration, correlation between parameters, and sampling techniques of acceleration-time continuous car-following models. The robustness of calibration is systematically investigated with an objective function that allows confidence regions around the minimum to be obtained. Then, the correlation between sets of calibrated parameters and the validity of the joint distributions sampling techniques are discussed. This paper confirms the need for adapted calibration and sampling techniques to obtain realistic sets of car-following parameters, which can be used later for simulation purposes.
Resumo:
Phosphorus has a number of indispensable biochemical roles, but its natural deposition and the low solubility of phosphates as well as their rapid transformation to insoluble forms make the element commonly the growth-limiting nutrient, particularly in aquatic ecosystems. Famously, phosphorus that reaches water bodies is commonly the main cause of eutrophication. This undesirable process can severely affect many aquatic biotas in the world. More management practices are proposed but long-term monitoring of phosphorus level is necessary to ensure that the eutrophication won't occur. Passive sampling techniques, which have been developed over the last decades, could provide several advantages to the conventional sampling methods including simpler sampling devices, more cost-effective sampling campaign, providing flow proportional load as well as representative average of concentrations of phosphorus in the environment. Although some types of passive samplers are commercially available, their uses are still scarcely reported in the literature. In Japan, there is limited application of passive sampling technique to monitor phosphorus even in the field of agricultural environment. This paper aims to introduce the relatively new P-sampling techniques and their potential to use in environmental monitoring studies.
Resumo:
As there are a myriad of micro organic pollutants that can affect the well-being of human and other organisms in the environment the need for an effective monitoring tool is eminent. Passive sampling techniques, which have been developed over the last decades, could provide several advantages to the conventional sampling methods including simpler sampling devices, more cost-effective sampling campaign, providing time-integrated load as well as representative average of concentrations of pollutants in the environment. Those techniques have been applied to monitor many pollutants caused by agricultural activities, i.e. residues of pesticides, veterinary drugs and so on. Several types of passive samplers are commercially available and their uses are widely accepted. However, not many applications of those techniques have been found in Japan, especially in the field of agricultural environment. This paper aims to introduce the field of passive sampling and then to describe some applications of passive sampling techniques in environmental monitoring studies related to the agriculture industry.
Resumo:
Bird species richness survey is one of the most intriguing ecological topics for evaluating environmental health. Here, bird species richness denotes the number of unique bird species in a particular area. Factors affecting the investigation of bird species richness include weather, observation bias, and most importantly, the prohibitive costs of conducting surveys at large spatiotemporal scales. Thanks to advances in recording techniques, these problems have been alleviated by deploying sensors for acoustic data collection. Although automated detection techniques have been introduced to identify various bird species, the innate complexity of bird vocalizations, the background noise present in the recording and the escalating volumes of acoustic data pose a challenging task on determination of bird species richness. In this paper we proposed a two-step computer-assisted sampling approach for determining bird species richness in one-day acoustic data. First, a classification model is built based on acoustic indices for filtering out minutes that contain few bird species. Then the classified bird minutes are ordered by an acoustic index and the redundant temporal minutes are removed from the ranked minute sequence. The experimental results show that our method is more efficient in directing experts for determination of bird species compared with the previous methods.
Resumo:
We present a technique for an all-digital on-chip delay measurement system to measure the skews in a clock distribution network. It uses the principle of sub-sampling. Measurements from a prototype fabricated in a 65 nm industrial process, indicate the ability to measure delays with a resolution of 0.5ps and a DNL of 1.2 ps.
Resumo:
We consider estimating the total load from frequent flow data but less frequent concentration data. There are numerous load estimation methods available, some of which are captured in various online tools. However, most estimators are subject to large biases statistically, and their associated uncertainties are often not reported. This makes interpretation difficult and the estimation of trends or determination of optimal sampling regimes impossible to assess. In this paper, we first propose two indices for measuring the extent of sampling bias, and then provide steps for obtaining reliable load estimates that minimizes the biases and makes use of informative predictive variables. The key step to this approach is in the development of an appropriate predictive model for concentration. This is achieved using a generalized rating-curve approach with additional predictors that capture unique features in the flow data, such as the concept of the first flush, the location of the event on the hydrograph (e.g. rise or fall) and the discounted flow. The latter may be thought of as a measure of constituent exhaustion occurring during flood events. Forming this additional information can significantly improve the predictability of concentration, and ultimately the precision with which the pollutant load is estimated. We also provide a measure of the standard error of the load estimate which incorporates model, spatial and/or temporal errors. This method also has the capacity to incorporate measurement error incurred through the sampling of flow. We illustrate this approach for two rivers delivering to the Great Barrier Reef, Queensland, Australia. One is a data set from the Burdekin River, and consists of the total suspended sediment (TSS) and nitrogen oxide (NO(x)) and gauged flow for 1997. The other dataset is from the Tully River, for the period of July 2000 to June 2008. For NO(x) Burdekin, the new estimates are very similar to the ratio estimates even when there is no relationship between the concentration and the flow. However, for the Tully dataset, by incorporating the additional predictive variables namely the discounted flow and flow phases (rising or recessing), we substantially improved the model fit, and thus the certainty with which the load is estimated.
Resumo:
Sampling strategies are developed based on the idea of ranked set sampling (RSS) to increase efficiency and therefore to reduce the cost of sampling in fishery research. The RSS incorporates information on concomitant variables that are correlated with the variable of interest in the selection of samples. For example, estimating a monitoring survey abundance index would be more efficient if the sampling sites were selected based on the information from previous surveys or catch rates of the fishery. We use two practical fishery examples to demonstrate the approach: site selection for a fishery-independent monitoring survey in the Australian northern prawn fishery (NPF) and fish age prediction by simple linear regression modelling a short-lived tropical clupeoid. The relative efficiencies of the new designs were derived analytically and compared with the traditional simple random sampling (SRS). Optimal sampling schemes were measured by different optimality criteria. For the NPF monitoring survey, the efficiency in terms of variance or mean squared errors of the estimated mean abundance index ranged from 114 to 199% compared with the SRS. In the case of a fish ageing study for Tenualosa ilisha in Bangladesh, the efficiency of age prediction from fish body weight reached 140%.
Resumo:
In treatment comparison experiments, the treatment responses are often correlated with some concomitant variables which can be measured before or at the beginning of the experiments. In this article, we propose schemes for the assignment of experimental units that may greatly improve the efficiency of the comparison in such situations. The proposed schemes are based on general ranked set sampling. The relative efficiency and cost-effectiveness of the proposed schemes are studied and compared. It is found that some proposed schemes are always more efficient than the traditional simple random assignment scheme when the total cost is the same. Numerical studies show promising results using the proposed schemes.
Resumo:
Nahhas, Wolfe, and Chen (2002, Biometrics 58, 964-971) considered optimal set size for ranked set sampling (RSS) with fixed operational costs. This framework can be very useful in practice to determine whether RSS is beneficial and to obtain the optimal set size that minimizes the variance of the population estimator for a fixed total cost. In this article, we propose a scheme of general RSS in which more than one observation can be taken from each ranked set. This is shown to be more cost-effective in some cases when the cost of ranking is not so small. We demonstrate using the example in Nahhas, Wolfe, and Chen (2002, Biometrics 58, 964-971), by taking two or more observations from one set even with the optimal set size from the RSS design can be more beneficial.
Resumo:
A new technique called the reef resource inventory (RRI) was developed to map the distribution and abundance of benthos and substratum on reefs. The rapid field sampling technique uses divers to visually estimate the percentage cover of categories of benthos and substratum along 2x20 in plotless strip-transects positioned randomly over the tops, and systematically along the edge of reefs. The purpose of this study was to compare the relative sampling accuracy of the RRI against the line intercept transect technique (LIT), an international standard for sampling reef benthos and substratum. Analysis of paired sampling with LIT and RRI at 51 sites indicated sampling accuracy was not different (P > 0.05) for 8 of the 12 benthos and substratum categories used in the study. Significant differences were attributed to small-scale patchiness and cryptic coloration of some benthos; effects associated with sampling a sparsely distributed animal along a line versus an area; difficulties in discriminating some of the benthos and substratum categories; and differences due to visual acuity since LIT measurements were taken by divers close to the seabed whereas RRI measurements were taken by divers higher in the water column. The relative cost efficiency of the RRI technique was at least three times that of LIT for all benthos and substratum categories and as much as 10 times higher for two categories. These results suggest that the RRI can be used to obtain reliable and accurate estimates of relative abundance of broad categories of reef benthos and substratum.
Resumo:
This article is motivated by a lung cancer study where a regression model is involved and the response variable is too expensive to measure but the predictor variable can be measured easily with relatively negligible cost. This situation occurs quite often in medical studies, quantitative genetics, and ecological and environmental studies. In this article, by using the idea of ranked-set sampling (RSS), we develop sampling strategies that can reduce cost and increase efficiency of the regression analysis for the above-mentioned situation. The developed method is applied retrospectively to a lung cancer study. In the lung cancer study, the interest is to investigate the association between smoking status and three biomarkers: polyphenol DNA adducts, micronuclei, and sister chromatic exchanges. Optimal sampling schemes with different optimality criteria such as A-, D-, and integrated mean square error (IMSE)-optimality are considered in the application. With set size 10 in RSS, the improvement of the optimal schemes over simple random sampling (SRS) is great. For instance, by using the optimal scheme with IMSE-optimality, the IMSEs of the estimated regression functions for the three biomarkers are reduced to about half of those incurred by using SRS.