961 resultados para Hypothalamic Paraventricular Nucleus


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We recently reported that brief, remotely controlled intrameal hepatic-portal vein infusions of glucagon-like peptide-1 (GLP-1) reduced spontaneous meal size in rats. To investigate the neurobehavioural correlates of this effect, we equipped male Sprague-Dawley rats with hepatic-portal vein catheters and assessed (i) the effect on eating of remotely triggered infusions of GLP-1 (1 nmol/kg, 5 min) or vehicle during the first nocturnal meal after 3 h of food deprivation and (ii) the effect of identical infusions performed at dark onset on c-Fos expression in several brain areas involved in the control of eating. GLP-1 reduced (P < 0.05) the size of the first nocturnal meal and increased its satiety ratio. Also, GLP-1 increased (P < 0.05) the number of c-Fos-expressing cells in the nucleus tractus solitarii, the area postrema and the central nucleus of the amygdala, but not in the arcuate or paraventricular hypothalamic nuclei. These data suggest that the nucleus tractus solitarii, the area postrema and the central nucleus of the amygdala play a role in the eating-inhibitory actions of GLP-1 infused into the hepatic-portal vein; it remains to be established whether activation of these brain nuclei reflect satiation, aversion, or both.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Intermittent electrical footshock induces c-fos expression in parvocellular neurosecretory neurons expressing corticotropin-releasing factor and in other visceromotor cell types of the paraventricular hypothalamic nucleus (PVH). Since catecholaminergic neurons of the nucleus of the solitary tract and ventrolateral medulla make up the dominant loci of footshock-responsive cells that project to the PVH, these were evaluated as candidate afferent mediators of hypothalamic neuroendocrine responses. Rats bearing discrete unilateral transections of this projection system were exposed to a single 30-min footshock session and sacrificed 2 hr later. Despite depletion of the aminergic innervation on the ipsilateral side, shock-induced up-regulation of Fos protein and corticotropin-releasing factor mRNA were comparable in strength and distribution in the PVH on both sides of the brain. This lesion did, however, result in a substantial reduction of Fos expression in medullary aminergic neurons on the ipsilateral side. These results contrast diametrically with those obtained in a systemic cytokine (interleukin 1) challenge paradigm, where similar cuts ablated the Fos response in the ipsilateral PVH but left intact the induction seen in the ipsilateral medulla. We conclude that (i) footshock-induced activation of medullary aminergic neurons is a secondary consequence of stress, mediated via a descending projection transected by our ablation, (ii) stress-induced activation of medullary aminergic neurons is not necessarily predictive of an involvement of these cell groups in driving hypothalamic visceromotor responses to a given stressor, and (iii) despite striking similarities in the complement of hypothalamic effector neurons and their afferents that may be activated by stresses of different types, distinct mechanisms may underlie adaptive hypothalamic responses in each.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic ethanol exposure leads to dysregulation of the hypothalamic-pituitary-adrenal axis, leading to changes in glucocorticoid release and function that have been proposed to maintain pathological alcohol consumption and increase vulnerability to relapse during abstinence. The objective of this study was to determine whether mifepristone, a glucocorticoid receptor antagonist, plays a role in ethanol self-administration and reinstatement. Male, Long-Evans rats were trained to self-administer either ethanol or sucrose in daily 30 min operant self-administration sessions using a fixed ratio 3 schedule of reinforcement. Following establishment of stable baseline responding, we examined the effects of mifepristone on maintained responding and yohimbine-induced increases in responding for ethanol and sucrose. Lever responding was extinguished in separate groups of rats and animals were tested for yohimbine-induced reinstatement and corticosterone release. We also investigated the effects of local mifepristone infusions into the central amygdala (CeA) on yohimbine-induced reinstatement of ethanol- and sucrose-seeking. In addition, we infused mifepristone into the basolateral amygdala (BLA) in ethanol-seeking animals as an anatomical control. We show that both systemic and intra-CeA (but not BLA) mifepristone administration suppressed yohimbine-induced reinstatement of ethanol-seeking, while only systemic injections attenuated sucrose-seeking. In contrast, baseline consumption, yohimbine-induced increases in responding, and circulating CORT levels were unaffected. The data indicate that the CeA plays an important role in the effects of mifepristone on yohimbine-induced reinstatement of ethanol-seeking. Mifepristone may be a valuable pharmacotherapeutic strategy for preventing relapse to alcohol use disorders and, as it is FDA approved, may be a candidate for clinical trials in the near future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Type-1 cannabinoid receptors (CB1R) are enriched in the hypothalamus, particularly in the ventromedial hypothalamic nucleus (VMH) that participates in homeostatic and behavioral functions including food intake. Although CB1R activation modulates excitatory and inhibitory synaptic transmission in the brain, CB1R contribution to the molecular architecture of the excitatory and inhibitory synaptic terminals in the VMH is not known. Therefore, the aim of this study was to investigate the precise subcellular distribution of CB1R in the VMH to better understand the modulation exerted by the endocannabinoid system on the complex brain circuitries converging into this nucleus. Methodology/Principal Findings: Light and electron microscopy techniques were used to analyze CB1R distribution in the VMH of CB1R-WT, CB1R-KO and conditional mutant mice bearing a selective deletion of CB1R in cortical glutamatergic (Glu-CB1R-KO) or GABAergic neurons (GABA-CB1R-KO). At light microscopy, CB1R immunolabeling was observed in the VMH of CB1R-WT and Glu-CB1R-KO animals, being remarkably reduced in GABA-CB1R-KO mice. In the electron microscope, CB1R appeared in membranes of both glutamatergic and GABAergic terminals/preterminals. There was no significant difference in the percentage of CB1R immunopositive profiles and CB1R density in terminals making asymmetric or symmetric synapses in CB1R-WT mice. Furthermore, the proportion of CB1R immunopositive terminals/preterminals in CB1R-WT and Glu-CB1R-KO mice was reduced in GABA-CB1R-KO mutants. CB1R density was similar in all animal conditions. Finally, the percentage of CB1R labeled boutons making asymmetric synapses slightly decreased in Glu-CB1R-KO mutants relative to CB1R-WT mice, indicating that CB1R was distributed in cortical and subcortical excitatory synaptic terminals. Conclusions/Significance: Our anatomical results support the idea that the VMH is a relevant hub candidate in the endocannabinoid-mediated modulation of the excitatory and inhibitory neurotransmission of cortical and subcortical pathways regulating essential hypothalamic functions for the individual's survival such as the feeding behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de doutoramento, Ciências Biomédicas (Fisiologia), Universidade de Lisboa, Faculdade de Medicina, 2014

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Obesity has become a major global health problem. Recently, attention has focused on the benefits of fermentable carbohydrates on modulating metabolism. Here, we take a system approach to investigate the physiological effects of supplementation with oligofructose-enriched inulin (In). We hypothesize that supplementation with this fermentable carbohydrate will not only lead to changes in body weight and composition, but also to modulation in neuronal activation in the hypothalamus. Male C57BL/6 mice were maintained on a normal chow diet (control) or a high fat (HF) diet supplemented with either oligofructose-enriched In or corn starch (Cs) for 9 weeks. Compared to HF+Cs diet, In supplementation led to significant reduction in average daily weight gain (mean ± s.e.m.: 0.19 ± 0.01 g vs. 0.26 ± 0.02 g, P < 0.01), total body adiposity (24.9 ± 1.2% vs. 30.7 ± 1.4%, P < 0.01), and lowered liver fat content (11.7 ± 1.7% vs. 23.8 ± 3.4%, P < 0.01). Significant changes were also observed in fecal bacterial distribution, with increases in both Bifidobacteria and Lactobacillius and a significant increase in short chain fatty acids (SCFA). Using manganese-enhanced MRI (MEMRI), we observed a significant increase in neuronal activation within the arcuate nucleus (ARC) of animals that received In supplementation compared to those fed HF+Cs diet. In conclusion, we have demonstrated for the first time, in the same animal, a wide range of beneficial metabolic effects following supplementation of a HF diet with oligofructose-enriched In, as well as significant changes in hypothalamic neuronal activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dorsal premammillary nucleus (PMd) is one of the most responsive hypothalamic sites during exposure to a predator or its odor, and to a context previously associated with a predatory threat; and lesions or pharmacological inactivation centered therein severely reduced the anti-predatory defensive responses. Previous studies have shown that beta adrenergic transmission in the PMd seems critical to the expression of fear responses to predatory threats. In the present study, we have investigated the putative sources of catecholaminergic inputs to the PMd. To this end, we have first described the general pattern of catecholaminergic innervation of the PMd by examining the distribution and morphology of the tyrosine hydroxylase (TH) immunoreactive fibers in the nucleus; and next, combining Fluoro Gold (FG) tracing experiments and TH immunostaining, we determined the putative sources of catecholaminergic inputs to the nucleus. Our results revealed that the PMd presents a moderately dense plexus of catecholaminergic fibers that seems to encompass the rostral pole and ventral border of the nucleus. Combining the results of the FG tract-tracing and TH immunostaining, we observed that the locus coeruleus was the sole brain site that contained double FG and TH immunostained cells. In summary, the evidence suggests that the locus coeruleus is seemingly a part of the circuit responding to predatory threats, and, as shown by the present results, is the sole source of catecholaminergic inputs to the PMd, providing noradrenergic inputs to the nucleus, which, by acting via beta adrenoceptor, seems to be critical for the expression of anti-predatory responses. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Circadian rhythms generated by the suprachiasmatic nucleus (SCN) are modulated by photic and non-photic stimuli. In rodents, direct photic stimuli reach the SCN mainly through the retinohypothalamic tract (RHT), whereas indirect photic stimuli are mainly conveyed by the geniculohypothalamic tract (GHT). In rodents, retinal cells form a pathway that reaches the intergeniculate leaflet (IGL) where they establish synapses with neurons that express neuropeptide Y (NPY), hence forming the GHT projecting to the SCN. In contrast to the RHT, which has been well described in primates, data regarding the presence or absence of the IGL and GHT in primates are contradictory. Some studies have suggested that an area of the pregeniculate nucleus (PGN) of primates might be homologous to the IGL of rodents, but additional anatomical and functional studies on primate species are necessary to confirm this hypothesis. Therefore, this study investigated the main histochemical characteristics of the PGN and the possible existence of the GHT in the SCN of the primate Cebus, comparing the distribution of NPY immunoreactivity, serotonin (5-HT) immunoreactivity and retinal terminal fibers in these two structures. The results show that a collection of cell bodies containing NPY and serotonergic immunoreactivity and retinal innervations are present within a zone that might be homologous to the IGL of rodents. The SCN also receives dense retinal innervations and we observed an atypical distribution of NPY- and 5-HT-immunoreactive fibers without regionalization in the ventral part of the nucleus as described for other species. These data may reflect morphological differences in the structures involved in the regulation of circadian rhythms among species and support the hypothesis that the GHT is present in some higher primates (diurnal animals). (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physiological conditions of low leptin levels like those observed during negative energy balance are usually characterized by the suppression of luteinizing hormone (LH) secretion and fertility. Leptin administration restores LH levels and reproductive function. Leptin action on LH secretion is thought to be mediated by the brain. However, the neuronal population that mediates this effect is still undefined. The hypothalamic ventral premammillary nucleus (PMV) neurons express a dense concentration of leptin receptors and project to brain areas related to reproductive control. Therefore, we hypothesized that the PMV is well located to mediate leptin action on LH secretion. To test our hypothesis, we performed bilateral excitotoxic lesions of the PMV in adult female rats. PMV-lesioned animals displayed a clear disruption of the estrous cycle, remaining in anestrus for 15-20 d. After apparent recovery of cyclicity, animals perfused in the afternoon of proestrus showed decreased Fos immunoreactivity in the anteroventral periventricular nucleus and in gonadotropin releasing hormone neurons. PMV-lesioned animals also displayed decreased estrogen and LH secretion on proestrus. Lesions caused no changes in mean food intake and body weight up to 7 weeks after surgery. We further tested the ability of leptin to induce LH secretion in PMV-lesioned fasted animals. We found that complete lesions of the PMV precluded leptin stimulation of LH secretion on fasting. Our findings demonstrate that the PMV is a key site linking changing levels of leptin and coordinated control of reproduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies from our laboratory have documented that the medial hypothalamic defensive system is critically involved in processing actual and contextual predatory threats, and that the dorsal premammillary nucleus (PMd) represents the hypothalamic site most responsive to predatory threats. Anatomical findings suggest that the PMd is in a position to modulate memory processing through a projecting branch to specific thalamic nuclei, i.e., the nucleus reuniens (RE) and the ventral part of the anteromedial nucleus (AMv). In the present study, we investigated the role of these thalamic targets in both unconditioned (i.e., fear responses to predatory threat) and conditioned (i.e., contextual responses to predator-related cues) defensive behaviors. During cat exposure, all experimental groups exhibited intense defensive responses with the animals spending most of the time in the home cage displaying freezing behavior. However, during exposure to the environment previously associated with a cat, the animals with combined RE + AMv lesions, and to a lesser degree, animals with single AMv unilateral lesions, but not animals with single RE lesions, presented a reduction of contextual conditioned defensive responses. Overall, the present results provide clear evidence suggesting that the PMd`s main thalamic targets (i.e., the nucleus reuniens and the AMv) seem to be critically involved in the emotional memory processing related to predator cues. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Morphine withdrawal is characterized by physical symptoms and a negative affective state. The 41 amino acid polypeptide corticotropin-releasing hormone (CRH) is hypothesized to mediate, in part, both the negative affective state and the physical withdrawal syndrome. Here, by means of dual-immunohistochemical methodology, we examined the co-expression of the c-Fos protein and CRH following naloxone-precipitated morphine withdrawal. Rats were treated with slow-release morphine 50 mg/kg (subcutaneous, s.c.) or vehicle every 48 h for 5 days, then withdrawn with naloxone 5 mg/kg (s.c.) or saline 48 h after the final morphine injection. Two hours after withdrawal rats were perfused transcardially and their brains were removed and processed for immunohistochemistry. We found that naloxone-precipitated withdrawal of morphine-dependent rats increased c-Fos immunoreactivity (IR) in CRH positive neurons in the paraventricular hypothalamus. Withdrawal of morphine-dependent rats also increased c-Fos-IR in the central amygdala and bed nucleus of the stria terminalis, however these were in CRH negative neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A wide variety of stressors elicit Fos expression in the medial prefrontal cortex (mPFC). No direct attempts, however, have been made to determine the role of the inputs that drive this response. We examined the effects of lesions of mPFC catecholamine terminals on local expression of Fos after exposure to air puff, a stimulus that in the rat acts as an acute psychological stressor. We also examined the effects of these lesions on Fos expression in a variety of subcortical neuronal populations implicated in the control of adrenocortical activation, one classic hallmark of the stress response. Lesions of the mPFC that were restricted to dopaminergic terminals significantly reduced numbers of Fos-immunoreactive (Fos-IR) cells seen in the mPFC after air puff, but had no significant effect on stress-induced Fos expression in the subcortical structures examined. Lesions of the mPFC that affected both dopaminergic and noradrenergic terminals also reduced numbers of Fos-IR cells observed in the mPFC after air puff. Additionally, these lesions resulted in a significant reduction in stress-induced Fos-IR in the ventral bed nucleus of the stria terminalis. These results demonstrate a role for catecholaminergic inputs to the mPFC, in the generation of both local and subcortical responses to psychological stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water and 3% NaCl intake were increased by the injection of 4 ng angiotensin II (ANG II) into the anteroventral third ventricle (AV3V) region of rats. Pretreatment with two specific ANG II receptor antagonists, [octanoyl-Leu8]ANG II and [Leu8]ANG II, significantly reduced ANG II-induced water and saline intake. This inhibition lasted approximately 30 min, with partial recovery at 60 min. In rats with electrolytic lesion of the bilateral ventromedial nucleus of hypothalamus (VMH), the effect of ANG II on water intake was not different from that observed in sham rats, but saline ingestion increased. In summary, the present results show that the AV3V region is an important central structure for ANG II-induced saline ingestion. Lesion of the VMH increases the response to ANG II, showing an interaction between the AV3V region and the VMH in the regulation of salt ingestion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)