959 resultados para Hydrophobic Co-polymers
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Organic-inorganic hybrid materials based on the assembly between inorganic 2D host structure and polymer have received considerable attention in the last few years. This emerging class of materials presents several applications according to their structural and functional properties. Particularly, among others, layered double hydroxides (LDHs) provide the opportunity of preparing new organically modified 2D nanocomposites. Pyrrole carboxylic acid derivatives, namely 4-(lH-pyrrol-1-yl)benzoate, 3-(pyrrol-i-yl)-propanoate,7-(pyrrol-1-yl)-heptanoate, and aniline carboxylic acid derivative, namely 3-aminobenzoic acid, have been intercalated in LDHs of intralamellar composition Zn2Al(OH)(6). The LDHs were synthesized by the co-precipitation method at constant pH followed by hydrothermal treatment for 72 h. The materials were characterized by powder X-ray diffraction patterns (PXRD), transmission electron microscopy (TEM) thermogravimetric analysis (TGA), and electron spin resonance (ESR). The basal spacing found by the PXRD technique gives evidence of the formation of bilayers of the intercalated anions. ESR spectra present a typical signal with a superhyperfine structure with 6 + 1 lines (g = 2.005 +/- 0.0004), which is assigned to the interaction between a carboxylate radical from the guest molecules and a nearby aluminium nucleus (I = 5/2) from the host structure. Additionally, the ESR data suggest that the monomers are connected to each other in limited number after thermal treatment. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The hydrolysis reaction in alkaline conditions of the commercial polymer poly(acrylamide-co-metacrylate of 3,5,5-trimethyl-hexane) called HAPAM, containing 0.75 % of hydrophobic groups, was carried out in 0.1 M NaCl and 0.25M NaOH solutions, varying the temperature and reaction time. The polymers were characterized by 1H and 13C Nuclear Magnetic Resonance (NMR), Elemental Analysis and Size Exclusion Chromatography (SEC). The values of the hydrolysis degree were obtained by 13C NMR. The viscosity of HAPAM and HAPAM-10N-R solutions was evaluated as a function of shear rate, ionic strength and temperature. At high polymer concentration (Cp), the viscosity of HAPAM solutions increased with the ionic strength and decreased with the temperature. The viscosity of HAPAM-10N-R solutions increased significantly in distilled water, due to repulsions between the carboxylate groups. At high Cp, with the increase of ionic strength and temperature, occurred a decrease of viscosity, due to mainly the high hydrolysis degree and the low amount of hydrophobic groups. These results indicated that the studied polymers have properties more suitable for the application in Enhanced Oil Recovery (EOR) in low salinity and moderate temperature reservoirs
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Terpolymers of N-isopropylacrylamide, dodecyl methacrylate (DOMA) and poly(ethylene glycol) (PEG) methacrylate, were synthesized by random copolymerization, and the composition was controlled to achieve systems having different thermosensitivities. H-1 NMR spectra and gel permeation chromatography (GPC) were employed to characterize the different samples obtained. The solution properties were studied by employing spectrophotometry, fluorescence, and dynamic light scattering techniques. The chemical compositions in the final terpolymers are close to those in the feed. The polymers exhibited cloud point temperatures (T-es) varying from 17 to 52 degrees C. Micropolarity studies using I-1/I-3 ratio of the vibronic bands of pyrene show the formation of amphiphilic aggregates capable of incorporating hydrophobic drugs as the polymer concentration is increased. The critical aggregation concentration (CAC) increases from 3.6 x 10(-3) to 1 x 10(-2) g/l with the PEG content varying from 5 to 35 mol%. Anisotropy measurements confirm the results obtained by pyrene fluorescence and show that the aggregates resulting from intermolecular interactions present different organizations. The hydrodynamic diameters (Dh) of the aggregates determined by dynamic light scattering (DLS) vary from 40 to 150 nm depending on the terpolymer composition. The T-cs and Dh values decreased with the ionic strength, and this behavior was attributed to the dehydration of the polymeric micelles. The capacity of solubilization of the aggregates was evaluated by employing pyrene, and the obtained results confirm the ability to incorporate hydrophobic molecules. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
The interaction between cationic surfactants and isopropylacrylamide-acrylic acid-ethyl methacrylate (IPA:AA:EMA) terpolymers has been investigated using steady-state fluorescence and spectrophotometric measurements to assess the effect of the polymer composition on the aggregation process and terpolymers' thermosensitivities. Micropolarity studies using pyrene show that the interaction of cationic surfactants with IPA:AA:EMA terpolymers occurs at surfactant concentrations much smaller than that observed for the pure surfactant in aqueous solution. The critical aggregation concentration (CAC) values decrease with both the hydrocarbon length of the surfactant and the content of ethyl methacrylate. These results were interpreted as a manifestation of the increasing contribution of attractive hydrophobic and electrostatic forces between negatively charged polymer chains and positively charged surfactant molecules. The increase of ethyl methacrylate in the copolymers lowers the CAC due to the larger hydrophobic character of the polymer backbone. The cloud point determination reveals that the lower critical solution temperatures (LCST) depend strongly on the copolymer composition and surfactant nature. The binding of surfactants molecules to the polymer chain screens the electrostatic repulsion between the carboxylic groups inducing a conformational transition and the dehydration of the polymer chain.
Resumo:
The interaction between sodium dodecylsulfate (SDS) and acrylic acid (AA)-ethyl methacrylate (EMA) copolymers has been investigated using steady state fluorescence and conductimetric measurements to assess the effect of the polymer composition on the aggregation process. Micropolarity studies using the ratio between the emission intensities of the vibronic bands of pyrene (I-1/I-3) and the shift of the fluorescence emission of pyrene-3-carboxaldehyde show, that the interaction of SDS with AA-EMA copolymers occurs at surfactant concentrations smaller than that observed for the pure surfactant in water and depends on the copolymer composition. The increase of ethyl methacrylate in the copolymers lowers the critical aggregation concentration (CAC) due to the larger hydrophobic character of the polymer backbone. The formation of aggregates on the macromolecule is induced mainly, by hydrophobic interactions, but the process is also influenced by the ionic strength due to the counter-ions of the polyelectrolyte.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Electron spin resonance (ESR) experiments give extremely important information concerning spin arrangements in conducting polymers. This is evidenced by the behavior of the ESR lines as a function of temperature and microwave power. Our ESR data of pressed pellets of ClO- 4 doped poly(3-methylthiophene) (P3MT) synthesized at 25 °C show the predominance of polarons. Instead, the sample prepared at 5 °C shows the predominance of bipolarons. Besides, for both types of samples, crystallization, observed from the ESR data, has shown a rearrangement of spin species.
Resumo:
Polymeric nanoparticles have received great attention as potential controlled drug delivery systems. Biodegradable polymers has been extensively used in the development of these drug carriers, and the polyesters such as polylactic acid, polyglycolic acid and their copolymers as poly-lactide-co- glycolide are the most used, considering its biocompatibility and biodegradability. Thermal analysis techniques have been used for pharmaceutical substances for more than 30 years and are routine methods for screening drug-excipient interactions. The aim of this work is to use thermal analysis to characterize PLGA nanoparticles containing a hydrophobic drug, praziquantel. The results show that the drug is in an amorphous state or in disordered crystalline phase of molecular dispersion in the PLGA polymeric matrix and that the microencapsulation process did not interfere with the chemical structure of the polymer, mantaining the structural drug integrity.
Resumo:
A series of segmented poly(urethane-urea)s containing 1,3,5 triazine in the hard block and hexamethylene spacers in the soft block was prepared. The hard to soft segment ratio was varied systematically, to afford a series of polymers in which the chromophore concentration varied from 4.2% to 18.1%. Although triazine emission is located in the UV region, the films with higher content of the chromophore emitted a visible blue light (425 nm) when excited at the very red-edge of the absorption band. The photophysical properties of the materials were strongly dependent on the relative amount of triazine moieties along the main chain. Isolated moieties emit in copolymers with small amount of triazine groups, indicating that even though in solid state, these moieties tend to be apart. Two photophysical consequences were observed when the amount of triazine increases: there is some energy transfer process involving isolated moieties with consequent decrease of the lifetime and an additional red-edge emission attributed to aggregated lumophores. The mono-exponential decay observed for the isolated form is substituted by a bi-exponential decay of the aggregated species. The materials were not strong emitters, but since the N-containing triazine moieties are good electron transport groups, the polymers have potential application as electron transport enhancers in various applications. © 2006 Elsevier B.V. All rights reserved.
Resumo:
The structure and the thermodegradation behavior of both poly(methyl methacrylate)-co-poly(3-tri(methoxysilyil)propyl methacrylate) polymer modified with silyl groups and of intercalated poly(methyl methacrylate)-co-poly(3- tri(methoxysilyil)propyl methacrylate)/Cloisite 15A™ nanocomposite have been in situ probed. The structural feature were comparatively studied by Fourier transform infrared spectroscopy (FTIR), 13C and 29Si nuclear magnetic resonance (NMR), and small angle X-ray scattering (SAXS) measurements. The intercalation of polymer in the interlayer galleries was evidenced by the increment of the basal distance from 31 to 45 Å. The variation of this interlayer distance as function of temperature was followed by in situ SAXS. Pristine polymer decomposition pathway depends on the atmosphere, presenting two steps under air and three under N2. The nanocomposites are more stable than polymer, and this thermal improvement is proportional to the clay loading. The experimental results indicate that clay nanoparticles play several different roles in polymer stabilization, among them, diffusion barrier, charring, and suppression of degradation steps by chemical reactions between polymer and clay. Charring is atmosphere dependent, occurring more pronounced under air. © 2012 Society of Plastics Engineers.
Resumo:
A Indústria Farmacêutica utiliza polímeros em forma de nanopartículas em formulações de liberação controlada e vetorizada por possuírem baixo custo em relação a demais métodos de preparações de formas farmacêuticas, aparentemente não serem reconhecidos pelo sistema de defesa do organismo, proporcionar melhora da eficácia, diminuição da toxicidade e da dose de fármaco administrado. O sulfato de condroitina-co-Nisopropilacrilamida (SCM + NIPAAm) é um copolímero proposto para este fim, a partir da reação de um polímero sintético, o poli N-isopropilacrilamida (PNIPAAm), com características termossensíveis, com um natural, o Sulfato de Condroitina (SC), com características bioadesivas. Assim, a copolimerização pode ser capaz de somar estas propriedades e aperfeiçoar o seu uso como um veículo para liberação controlada. Este trabalho objetivou, portanto, realizar a caracterização fisico-quimica das partículas de sulfato de condroitina e Nisopropilacrilamida e do copolímero SCM+NIPAAm (2,5 % e 5%) e do SCM+PNIPAAm 2,5% e uma avaliação toxicológica parcial de um destes copolímeros que apresentar as melhores propriedades de um eficiente carreador de fármacos, selecionado a partir dos ensaios de caracterização físico-química. Para determinar a estrutura química dos sistemas particulados e analisar os seus componentes químicos, foi realizada a Espectroscopia de Ressonância Magnética Nuclear (RMN) e Espectroscopia do Infravermelho com Transformada de Fourrier (FTIR); Para analisar a morfologia das partículas, foi usado a Microscopia Eletrônica de Varredura (MEV); A Termogravimetria/ Termogravimetria Derivada e Análise Térmica Diferencial (TG/DTG) foi usada para avaliar o comportamento térmico dos sistemas particulados, bem como auxiliar na análise de Cinética de Degradação (CD, método de Flynn-Wall-Ozawa); Foi ainda realizado a técnica de degradação in vitro e a determinação carga superficial e tamanho de partículas (análise do Potencial Zeta, PZ). Para avaliar a toxicidade, foi realizado o bioensaio em microcrustáceo Artemia salina (24 e 48 h), viabilidade celular (citotoxicidade) em células PC-12 (método do MTT) e também a toxicidade aguda oral em camundongos. As análises de RMN, FTIR e MEV demonstraram semelhança quanto ao aspecto estrutural e morfológico entre os copolímeros estudados. As análises de TG demonstraram que o SCM+NIPAAm 5% apresentou maior estabilidade térmica em relação aos demais copolímeros avaliados, uma vez que sua decomposição polimérica ocorre em temperaturas superiores, em torno de 233ºC. O DTA demonstrou valores de temperaturas concordantes com os eventos térmicos de decomposição apresentados pelas curvas das análises TG. Sua estabilidade foi confirmada através da CD e estudo de degradação in vitro, apresentando, respectivamente, Ea > 100 kJ mol-1 e perda de 48% da sua massa inicial após três meses. Além disso, SCM+NIPAAm 5% apresentou diâmetro de partícula inferior a 200 nm e índice de polidispersão de 0,35, além do PZ > -30mV, caracteristicas de um promissor candidato a carreador de fármacos. Em relação às avaliações toxicológicas, o SCM+NIPAAm 5% não apresentou toxicidade no bioensaio de A. salina (CL50 > 1000) e no modelo celular avaliado, dentro das concentrações e circunstâncias de exposição estudadas. O SCM+NIPAAm 5%, na dose oral de 2000 mg/kg, não apresentou nenhum sinal evidente de toxicidade em camundongos, o que foi corroborado pela ausência de alterações anatomo-histopatológicas. A copolimerização do Sulfato de Condroitina e N-isopropilacrilamida na concentração estudada, dada suas características físico-químicas e toxicológicas preliminares, apresenta propriedades que contribuem para a proposta de um sistema que constitui uma nova forma de liberação controlada, especialmente de fármacos.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)