543 resultados para Hydrogel*


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to clarify the relative roles of medial versus luminal factors in the induction of thickening of the arterial intima after balloon angioplasty injury. Platelet-derived growth factor (PDGF) and thrombin, both associated with thrombosis, and basic fibroblast growth factor (bFGF), stored in the arterial wall, have been implicated in this process. To unequivocally isolate the media from luminally derived factors, we used a 20-μm thick hydrogel barrier that adhered firmly to the arterial wall to block thrombus deposition after balloon-induced injury of the carotid artery of the rat. Thrombosis, bFGF mobilization, medial repopulation, and intimal thickening were measured. Blockade of postinjury arterial contact with blood prevented thrombosis and dramatically inhibited both intimal thickening and endogenous bFGF mobilization. By blocking blood contact on the two time scales of thrombosis and of intimal thickening, and by using local protein release to probe, by reconstitution, the individual roles of PDGF-BB and thrombin, we were able to conclude that a luminally derived factor other than PDGF or thrombin is required for the initiation of cellular events leading to intimal thickening after balloon injury in the rat. We further conclude that a luminally derived factor is required for mobilization of medial bFGF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The aim was to evaluate the visual performance achieved with a new multifocal hybrid contact lens and to compare it with that obtained with two other currently available multifocal soft contact lenses. Methods: This pilot prospective comparative study comprised a total of 16 presbyopic eyes of eight patients ranging in age from 43 to 58 years. All patients were fitted with three different models of multifocal contact lens: Duette multifocal (SynergEyes), Air Optix AQUA multifocal (Alcon) and Biofinity multifocal (CooperVision). Fittings were performed randomly in each patient according to a random number sequence, with a wash-out period between fittings of seven days. At two weeks post-fitting, visual, photopic contrast sensitivity and ocular aberrometry were evaluated. Results: No statistically significant differences were found in distance and near visual acuity achieved with the three different types of multifocal contact lens (p ≥ 0.05). Likewise, no significant differences between lenses were found in the monocular and binocular defocus curve (p ≥ 0.10). Concerning contrast sensitivity, better monocular contrast sensitivities for 6, 12 and 18 cycles per degree were found with the Duette and Air Optix multifocal compared to Biofinity (p = 0.02). Binocularly, differences between lenses were not significant (p ≥ 0.27). Furthermore, trefoil aberration was significantly higher with Biofinity multifocal (p < 0.01) and Air Optix (p = 0.01) multifocal compared to Duette. Conclusions: The Duette multifocal hybrid contact lens seems to provide similar visual quality outcomes in presbyopic patients with low corneal astigmatism, when compared with other soft multifocal contact lenses. This preliminary result should be confirmed in studies with larger samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Around 80% of people are affected by low back pain at least once in their life, often caused by trauma provoking intervertebral disc (IVD) herniation and/or IVD degeneration. Apart from some promising approaches for nucleus pulposus repair, so far no treatment or repair is available for the outer fibrous tissue, annulus fibrosus (AF). We aimed for sealing and repairing an AF injury in a bovine IVD organ culture model in vitro over 14 days under different loading conditions. For this purpose, a silk fleece composite from Bombyx mori silk was combined with genipin-enhanced fibrin hydrogel [1]. METHODS: Bovine IVDs of 12-17 months old animals were isolated by first removing all surrounding tissue, followed by cutting out the IVDs [2]. Culturing of discs occurred in high glucose Dulbecco's Modified Eagle Medium (HG-DMEM) supplemented with 5% serum as previously described. On the next day, injury was induced using a 2mm biopsy punch (Polymed, Switzerland). The formed cavity was filled with (0.4%) genipin-enhanced human based fibrin hydrogel (35- 55mg/mL human fibrinogen, Baxter, Austria) and sealed with a silk fleece-membrane composite (Spintec Engineering, Germany). Different culture conditions were applied: free swelling, static diurnal load of 0.2MPa for 8h/d and complex loading at 0.2MPa compression combined with ± 2° torsion at 0.2Hz for 8h/d. Complex loading was applied by a custom built 2 degree of freedom bioreactor [3]. After 14 days of culture cell activity was determined with resazurin assay. Additionally, glycosaminoglycan (dimethyl-methylene blue), DNA (Hoechst) and collagen content (hydroxy-proline) were determined. Finally, real-time qPCR of major IVD marker genes was performed. RESULTS: The silk seal closing the injury site could successfully withstand the forces of all three loading conditions with no misplacement over the two weeks’ culture. Nevertheless, disc height of the repaired discs did not significantly differ from the injured group. The disc phenotype could be maintained as demonstrated by biochemical analysis of gene expression, cell activity, DNA-, collagen- and GAG content. The silk itself was evaluated to be highly biocompatible for hMSC, as revealed by cytotoxicity assays. DISCUSSION & CONCLUSIONS: The silk can be considered a highly-elastic and biocompatible material for AF closure and the genipin-enhanced fibrin hydrogel has also good biomechanical properties. However, the cyto-compatibility of genipin seems rather poor and other hydrogels and/or cross-linkers should be looked into. REFERENCES: 1 C.C. Guterl et al. (2014) Characterization of Mechanics and Cytocompatibility of Fibrin Genipin Annulus Fibrosus Sealant with the Addition of Cell Adhesion Molecules, Tissue Eng Part A 2 S.C. Chan, B. Gantenbein-Ritter (2012) Preparation of intact bovine tail intervertebral discs for organ culture, J Vis Exp 3 B Gantenbein et al. (2015) Organ Culture Bioreactors - Platforms to Study Human Intervertebral Disc Degeneration and Regenerative Therapy, Curr Stem Cell Res Ther [epub ahead of print] ACKNOWLEDGEMENTS: This project is supported by the Gebert Rüf Stiftung project # GRS-028/13.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hydrogel intervertebral disc (lVD) model consisting of an inner nucleus core and an outer anulus ring was manufactured from 30 and 35% by weight Poly(vinyl alcohol) hydrogel (PVA-H) concentrations and subjected to axial compression in between saturated porous endplates at 200 N for 11 h, 30 min. Repeat experiments (n = 4) on different samples (N = 2) show good reproducibility of fluid loss and axial deformation. An axisymmetric nonlinear poroelastic finite element model with variable permeability was developed using commercial finite element software to compare axial deformation and predicted fluid loss with experimental data. The FE predictions indicate differential fluid loss similar to that of biological IVDs, with the nucleus losing more water than the anulus, and there is overall good agreement between experimental and finite element predicted fluid loss. The stress distribution pattern indicates important similarities with the biological lVD that includes stress transference from the nucleus to the anulus upon sustained loading and renders it suitable as a model that can be used in future studies to better understand the role of fluid and stress in biological IVDs. (C) 2005 Springer Science + Business Media, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose. To report differences in the incidence of conjunctival epithelial flaps (CEFs) found in a group of neophyte contact wearers using two different silicone hydrogel contact lenses on a daily- and continuous-wear basis during an 18-month period. Methods. Sixty-one subjects were initially examined, and 53 were eligible to participate in the study. Eligible subjects were randomly assigned to wear one of two silicone hydrogel materials, lotrafilcon A or balafilcon A, on a daily- or continuous-wear basis. After an initial screening, subjects were monitored weekly for the first month and then after 3, 6, 12, and IS months. The incidence of CEFs in each of the four contact lens groups was recorded. Results. Five of the 53 subjects enrolled in the study showed bilateral CEFs. A higher incidence of CEFs was found in subjects wearing lotrafilcon A lenses (n = 4) compared to balafilcon A lenses (it = 1) (chi(2) = 4.37, P=0.04). Differences in the incidence of CEFs between subjects wearing lenses on a daily-wear basis (n = 1) versus a continuous-wear basis (it = 4) showed a weak statistical significance (chi(2) = 3.03, P=0.08). Conclusions. Lotrafilcon A lenses were associated with a higher incidence of CEFs than balafilcon A lenses were, and this difference may be attributed to differences in the edge design, material, or modulus of rigidity between the two lens types. Subjects wearing lenses on a daily-wear basis showed fewer adverse events than did subjects wearing lenses on a continuous-wear basis. The longer wearing times of subjects wearing lenses on a continuous-wear basis are likely to exacerbate the incidence of CEFs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pH and counter-ion response of a microphase separated poly(methyl methacrylate)-block-poly(2-(diethylamino)ethyl methacrylate)-block-poly(methyl methacrylate) hydrogel has been investigated using laser light scattering on an imprinted micron scale topography. A quartz diffraction grating was used to create a micron-sized periodic structure on the surface of a thin film of the polymer and the resulting diffraction pattern used to calculate the swelling ratio of the polymer film in situ. A potentiometric titration and a sequence of counter ion species, taken from the Hofmeister series, have been used to compare the results obtained using this novel technique against small angle X-ray scattering (nanoscopic) and gravimetric studies of bulk gel pieces (macroscopic). For the first time, the technique has been proven to be an inexpensive and effective analytical tool for measuring hydrogel response on the microscopic scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the effect of a range of monovalent sodium salts on the molecular equilibrium swelling of a simple synthetic microphase separated poly(methyl methacrylate)-block-poly(2-(diethylamino)ethyl methacrylate)-block-poly(methyl methacrylate) (PMMA88-b-PDEA223-b-PMMA88) pH-responsive hydrogel. Sodium acetate, sodium chloride, sodium bromide, sodium iodide, sodium nitrate and sodium thiocyanate were selected for study at controlled ionic strength and pH; all salts are taken from the Hofmeister series (HS). The influence of the anions on the expansion of the hydrogel was found to follow the reverse order of the classical HS. The expansion ratio of the gel measured in solutions containing the simple sodium halide salts (NaCl, NaBr, and NaI) was found to be strongly related to parameters which describe the interaction of the ion with water; surface charge density, viscosity coefficient, and entropy of hydration. A global study which also included nonspherical ions (NaAce, NaNO3 and NaSCN) showed the strongest correlation with the viscosity coefficient. Our results are interpreted in terms of the Collins model,(1) where larger ions have more mobile water in the first hydration cage immediately surrounding the gel, therefore making them more adhesive to the surface of the stationary phase of the gel and ultimately reducing the level of expansion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fundamental if poorly understood problem that hydrogels display is the tendency of these contact lens materials to dehydrate, causing certain complications of the corneal epithelium. However, recent studies have indicated that the evaporation rate of water from different hydrogel lenses is the same and the severity of conditions such as corneal staining is controlled by the states of water in the material. A study was therefore undertaken which concluded that increased corneal desiccating staining occurred as the proportion of water existing in the bound state decreased. The possibility of using dehydrated hydrogels as packaging materials with desiccating properties has also been investigated. As hydrogels have a high affinity for water they have adequate ability to function as a moisture scavenger in an enclosed atmosphere. It was concluded that this ability is maximised by a high total water content and an increase in the proportion of this water existing in the bound state for the material when it is fully hydrated. N-vinyl pyrrolidone has a low reactivity in vinyl polymerisation reactions which results in polymers with local domains of the same chemical type which can lead to deposition. As contact lenses comprising of this monomer are susceptible to deposition, a monomer with a higher reactivity in vinyl polymerisations is acryloylmorpholine and its incorporation in favour of NVP is encouraged. Unfortunately a large proportion of high EWC hydrogels are mechanically weak and attempts to increase this property by increasing hydrophobicity or cross-linking results in a decrease in EWC. Monomers with the potential to carry a positive charge were incorporated into a high EWC, AMO-HEMA copolymer and the physical properties were investigated. Although EWC increased, mechanical properties decreased only slightly. Therefore simultaneous incorporation of a positively charged monomer and a negatively charged monomer was investigated. The resulting copolymers showed increased water content and increased initial modulus. A technique for measuring the coefficient of friction of contact lenses during lubrication has been developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work presents a new method that combines plasma etching with extrinsic techniques to simultaneously measure matrix and surface protein and lipid deposits. The acronym for this technique is PEEMS - Plasma Etching and Emission Monitoring System. Previous work has identified the presence of proteinaceous and lipoidal deposition on the surface of contact lenses and highlighted the probability that penetration of these spoilants will occur. This technique developed here allows unambiguous identification of the depth of penetration of spoilants to be made for various material types. It is for this reason that the technique has been employed in this thesis. The technique is applied as a 'molecular' scalpel, removing known amounts of material from the target. In this case from both the anterior .and posterior surfaces of a 'soft' contact lens. The residual material is then characterised by other analytical techniques such as UV/visible .and fluorescence spectroscopy. Several studies have be.en carried out for both in vivo and in vitro spoilt materials. The analysis and identification of absorbed protein and lipid of the substrate revealed the importance of many factors in the absorption and adsorption process. The effect of the material structure, protein nature (in terms of size, shape and charge) and environment conditions were examined in order to determine the relative uptake of tear proteins. The studies were extended to real cases in order to study the. patient dependent factors and lipoidal penetration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently over 50 million people worldwide wear contact lenses, of which over 75% wear hydrogel lenses. Significant deposition occurs in approximately 80% of hydrogel lenses and many contact lens wearers cease wearing lenses due to problems associated with deposition. The contact lens field is not alone in encountering complications associated with interactions between the body and artificial devices. The widespread use of man-made materials to replace structures in the body has emphasised the importance of studies that examine the interactions between implantation materials and body tissues.This project used carefully controlled, randomized clinical studies to study the interactive effects of contact lens materials, care systems, replacement periods and patient differences. Of principal interest was the influence of these factors on material deposition and their subsequent impact on subjective performance. A range of novel and established analytical techniques were used to examine hydrogel lenses following carefully controlled clinical studies in which clinical performance was meticulously monitored. These studies established the inter-relationship between clinical performance and deposition to be evaluated. This project showed that significant differences exist between individuals in their ability to deposit hydrogel lenses, with approximately 20% of subjects displaying significant deposition irrespective of the lens material. Additionally, materials traditionally categorised together show markedly different spoilation characteristics, which are wholly attributable to their detailed chemical structure. For the first time the in vivo deposition kinetics of both protein and lipid in charged and uncharged polymers was demonstrated. In addition the importance of care systems in the deposition process was shown, clearly demonstrating the significance of the quality rather than the quantity of deposition in influencing subjective performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interpenetrating polymer networks (lPN's), have been defined as a combination of two polymers each in network form, at least one of which has been synthesised and / or crosslinked in the presence of the other. A semi-lPN, is formed when only one of the polymers in the system is crosslinked, the other being linear. lPN's have potential advantages over homogeneous materials presently used in biomedical applications, in that their composite nature gives them a useful combination of properties. Such materials have potential uses in the biomedical field, specifically for use in hard tissue replacements, rigid gas permeable contact lenses and dental materials. Work on simply two or three component systems in both low water containing lPN's supplemented by the study of hydrogels (water swollen hydrophilic polymers) can provide information useful in the future development of more complex systems. A range of copolymers have been synthesised using a variety of methacrylates and acrylates. Hydrogels were obtained by the addition of N-vinyl pyrrolidone to these copolymers. A selection of interpenetrants were incorporated into the samples and their effect on the copolymer properties was investigated. By studying glass transition temperatures, mechanical, surface, water binding and oxygen permeability properties samples were assessed for their suitability for use as biomaterials. In addition copolymers containing tris-(trimethylsiloxy)-y-methacryloxypropyl silane, commonly abbreviated to 'TRlS', have been investigated. This material has been shown to enhance oxygen permeability, a desirable property when considering the design of contact lenses. However, 'TRIS' has a low polar component of surface free energy and hence low wettability. Copolymerisation with a range of methacrylates has shown that significant increases in surface wettability can be obtained without a detrimental effect on oxygen permeability. To further enhance to surface wettability 4-methacryloxyethyl trimellitic anhydride was incorporated into a range of promising samples. This study has shown that by careful choice of monomers it is possible to synthesise polymers that possess a range of properties desirable in biomedical applications.