950 resultados para Hydrocarbon biodegradation
Resumo:
This work describes the covalent immobilization of an ironporphyrin, 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin iron(III) chloride (FeTFPP), onto maghemite/silica magnetic nanospheres covered with aminofunctionalized silica. The resulting material (gamma-Fe2O3/SiO2-NHFeP) was characterized by diffuse reflectance infrared spectroscopy (DRIFTS) and UV-Vis absorption spectroscopy. The catalytic activity of this magnetic ironporphyrin was investigated in the oxidation of hydrocarbons (styrene, (Z)-cyclooctene and R-(+)-limonene) and an herbicide (simazine) by hydrogen peroxide or 3-chloroperoxybenzoic acid. Hydrocarbon and simazine oxidation reaction products were analyzed by gas chromatography (GC) and high performance liquid chromatography (HPLC), respectively. This catalytic system proved to be efficient and selective for hydrocarbon oxidation, leading to high product yields from styrene (89%), cyclooctene (71%) and R-(+) -limonene (86%). Simazine oxidation was attained with 100% selectivity for a dechlorinated product (OEAT), while several oxidation products were obtained for the same catalyst in homogeneous media. The catalyst can be easily recovered through application of an external magnetic field and washed after reaction. Catalyst reuse experiments for R-(+)-limonene oxidation have shown that the catalytic activity is kept at 90% after 10 consecutive reactions.
Resumo:
USE OF ADDITIVES IN THE WOOD BIODEGRADATION BY THE FUNGUS Ceriporiopsis subvermispora: EFFECT IN THE MANGANESE PEROXIDASE-DEPENDENT LIPID PEROXIDATION. Ceriporiopsis subvermispora is a selective fungus in the wood delignification and the most promising in biopulping. Through the lipid peroxidation initiated by manganese peroxidase (MnP), free radicals can be generated, which can act in the degradation of lignin nonphenolic structures. This work evaluated the prooxidant activity (based in lipid peroxidation) of enzymatic extracts from wood biodegradation by this fungus in cultures containing exogenous calcium, oxalic acid or soybean oil. It was observed that MnP significant activity is required to promote lipid peroxidation and wood delignification. Positive correlation between prooxidant activity x MnP was observed up to 300 IU kg(-1) of wood.
Resumo:
In this study, an effective microbial consortium for the biodegradation of phenol was grown under different operational conditions, and the effects of phosphate concentration (1.4 g L-1, 2.8 g L-1, 4.2 g L-1), temperature (25 degrees C, 30 degrees C, 35 degrees C), agitation (150 rpm, 200 rpm, 250 rpm) and pH (6, 7, 8) on phenol degradation were investigated, whereupon an artificial neural network (ANN) model was developed in order to predict degradation. The learning, recall and generalization characteristics of neural networks were studied using data from the phenol degradation system. The efficiency of the model generated by the ANN was then tested and compared with the experimental results obtained. In both cases, the results corroborate the idea that aeration and temperature are crucial to increasing the efficiency of biodegradation.
Resumo:
In this work poly(hydroxybutyrate/poly(vinyl butyral)- co-(vinyl alcohol)-co(vinyl acetate) (or ethylene propylene diene monomer rubber) blends were prepared by conventional processing techniques (extrusion and injection moulding). A droplet type morphology was obtained for P(3HB)/PVB blends whereas P(3HB)/EPDM blends presented some extent of co-continuous morphology. In addition, rubbery domains were much smaller in the case of PVB. These differences in morphology are discussed taking into account solubility parameters and rheological behaviours of each component. For both blends, the increase of elastomer ratio led to a decrease of Young's modulus but an increase in elongation at break and impact strength. The latter increased more in the case of P(3HB)/EPDM blends although the rubbery domains were larger. These results are explained in the light of the glass transition of the rubber and the presence of plasticizer in the case of PVB. The addition of elastomer also resulted in an increase of P(3HB) biodegradation rate, especially in the case of EPDM. It is assumed that, in this case, the size and morphology of the rubbery domains induce a geometrical modification of the erosion front which leads to an increase of the interface between P(3HB) phase and the degradation medium and consequently to an apparently faster biodegradation kinetics of PHB/rubber blends. Copyright (C) 2011 Society of Chemical Industry
Resumo:
The objective of this work was to evaluate the catabolic gene diversity for the bacterial degradation of aromatic hydrocarbons in anthropogenic dark earth of Amazonia (ADE) and their biochar (BC). Functional diversity analyses in ADE soils can provide information on how adaptive microorganisms may influence the fertility of soils and what is their involvement in biogeochemical cycles. For this, clone libraries containing the gene encoding for the alpha subunit of aromatic ring-hydroxylating dioxygenases (alpha-A RH D bacterial gene) were constructed, totaling 800 clones. These libraries were prepared from samples of an ADE soil under two different land uses, located at the Caldeirao Experimental Station secondary forest (SF) and agriculture (AG)-, and the biochar (SF_BC and AG_BC, respectively). Heterogeneity estimates indicated greater diversity in BC libraries; and Venn diagrams showed more unique operational protein clusters (OPC) in the SF_BC library than the ADE soil, which indicates that specific metabolic processes may occur in biochar. Phylogenetic analysis showed unidentified dioxygenases in ADE soils. Libraries containing functional gene encoding for the alpha subunit of the aromatic ring-hydroxylating dioxygenases (ARHD) gene from biochar show higher diversity indices than those of ADE under secondary forest and agriculture.
Resumo:
Cuticular hydrocarbons play important roles as chemical signatures of individuals, castes, sex and brood. They also can mediate the regulation of egg laying in ants, by informing directly or indirectly the reproductive status of queens. In this study we asked whether cuticular hydrocarbon profiles are correlated with castes and sex of Camponotus textor. Cuticular hydrocarbons were extracted from part of a mature colony (80 workers, 27 major workers, 27 queens, 27 virgin queens and 27 males). Results showed that cuticular hydrocarbons varied quantitatively and qualitatively among the groups and this variation was sufficiently strong to allow separation of castes and genders. We discuss the specificity of some compounds as possible regulatory compounds of worker tasks and reproduction in C. textor.
Resumo:
This work describes the covalent immobilization of an ironporphyrin, 5,10,15,20- tetrakis(pentafluorophenyl)porphyrin iron(III) chloride (FeTFPP), onto maghemite/silica magnetic nanospheres covered with aminofunctionalized silica. The resulting material (γ-Fe2O3/SiO2-NHFeP) was characterized by diffuse reflectance infrared spectroscopy (DRIFTS) and UV-Vis absorption spectroscopy. The catalytic activity of this magnetic ironporphyrin was investigated in the oxidation of hydrocarbons (styrene, (Z)-cyclooctene and R-(+)-limonene) and an herbicide (simazine) by hydrogen peroxide or 3-chloroperoxybenzoic acid. Hydrocarbon and simazine oxidation reaction products were analyzed by gas chromatography (GC) and high performance liquid chromatography (HPLC), respectively. This catalytic system proved to be efficient and selective for hydrocarbon oxidation, leading to high product yields from styrene (89%), cyclooctene (71%) and R-(+)-limonene (86%). Simazine oxidation was attained with 100% selectivity for a dechlorinated product (OEAT), while several oxidation products were obtained for the same catalyst in homogeneous media. The catalyst can be easily recovered through application of an external magnetic field and washed after reaction. Catalyst reuse experiments for R-(+)-limonene oxidation have shown that the catalytic activity is kept at 90% after 10 consecutive reactions.
Resumo:
In this work, the effect of blend composition and previous photodegradation on the biodegradation of polypropylene/ poly(3-hydroxybutyrate) (PP/PHB) blends was studied. The individual polymers and blends with or without the addition of poly(ethylene-co-methyl acrylate- co-glycidyl methacrylate) [P(E-MA-GMA)] as a compatibilizer (in the case of 80/20 blend) were exposed to UV light for 4 weeks and their biodegradation was evaluated. The biodegradation of PHB phase within the blends was hindered as PHB was the dispersed phase and PP fibrous particles were observed at the surface of the blend samples after biodegradation. Previous photodegradation lessened PHB biodegradation but enhanced the biodegradation of PP and the blends within the biodegradation time studied. Photodegradation resulted in cracks at the surface of PP and the blends, which probably facilitated the biotic reactions due to an easier access of the enzymes to deeper polymer layers. It also resulted in a decrease of molecular weight of PP phase and formation of carbonyl and hydroxyl groups which were consumed during biodegradation. Size exclusion chromatography analysis revealed that only the short chains of PP were consumed during biodegradation.
Resumo:
A microorganism was isolated which could grow on unusually high concentrations of the toxic pollutant 4-chlorophenol. Taxonomic studies showed that the microorganism constituted a novel species within the genus Arthrobacter and it was named Arthrobacter chlorophenolicus A6. A. chlorophenolicus A6 was chromosomally tagged with either the gfp gene, encoding the green fluorescent protein (GFP), or the luc gene, encoding firefly luciferase. When the tagged cells were inoculated into 4-chlorophenol contaminated soil they could completely remove 175 µg/g 4-chlorophenol within 10 days, whereas no loss of 4-chlorophenol was observed in the uninoculated control microcosms. During these experiments the gfp and luc marker genes allowed monitoring of cell number and metabolic status. When A. chlorophenolicus A6 was grown on mixtures of phenolic compounds, the strain exhibited a preference for 4-nitrophenol over 4-chlorophenol, which in turn was preferred over phenol. Analysis of growth and degradation data indicated that the same enzyme system was used for removal of 4-chlorophenol and 4-nitrophenol. However, degradation of unbstituted phenol appeared to be mediated by another or an additional enzyme system. The luc-tagged A. chlorophenolicus A6 gave valuable information about growth, substrate depletion and toxicity of the phenolic compounds in substrate mixtures. The 4-chlorophenol degradation pathway in A. chlorophenolicus A6 was elucidated. The metabolic intermediate subject to ring cleavage was found to be hydroxyquinol and two different pathway branches led from 4-chlorophenol to hydroxyquinol. A gene cluster involved in 4-chlorophenol degradation was cloned from A. chlorophenolicus A6. The cluster contained two functional hydroxyquinol 1,2-dioxygenase genes and a number of other open reading frames presumed to encode enzymes involved in 4-chlorophenol catabolism. Analysis of the DNA sequence suggested that the gene cluster had partly been assembled by horizontal gene transfer. In summary, 4-chlorophenol degradation by A. chlorophenolicus A6 was studied from a number of angles. This organism has several interesting and useful traits such as the ability to degrade high concentrations of 4-chlorophenol and other phenols alone and in mixtures, an unusual and effective 4-chlorophenol degradation pathway and demonstrated ability to remove 4-chlorophenol from contaminated soil.
Resumo:
In this thesis the application of biotechnological processes based on microbial metabolic degradation of halogenated compound has been investigated. Several studies showed that most of these pollutants can be biodegraded by single bacterial strains or mixed microbial population via aerobic direct metabolism or cometabolism using as a growth substrates aromatic or aliphatic hydrocarbons. The enhancement of two specific processes has been here object of study in relation with its own respective scenario described as follow: 1st) the bioremediation via aerobic cometabolism of soil contaminated by a high chlorinated compound using a mixed microbial population and the selection and isolation of consortium specific for the compound. 2nd) the implementation of a treatment technology based on direct metabolism of two pure strains at the exact point source of emission, preventing dilution and contamination of large volumes of waste fluids polluted by several halogenated compound minimizing the environmental impact. In order to verify the effect of these two new biotechnological application to remove halogenated compound and purpose them as a more efficient alternative continuous and batch tests have been set up in the experimental part of this thesis. Results obtained from the continuous tests in the second scenario have been supported by microbial analysis via Fluorescence in situ Hybridisation (FISH) and by a mathematical model of the system. The results showed that both process in its own respective scenario offer an effective solutions for the biological treatment of chlorinate compound pollution.
Resumo:
Polycyclic aromatic hydrocarbons are chemicals produced by both human activities and natural sources and they have been present in the biosphere since millions of years. For this reason microorganisms should have developed, during the world history, the capacity of metabolized them under different electron acceptors and redox conditions. The deep understanding of these natural attenuation processes and of microbial degradation pathways has a main importance in the cleanup of contaminated areas. Anaerobic degradation of aromatic hydrocarbons is often presumed to be slow and of a minor ecological significance compared with the aerobic processes; however anaerobic bioremediation may play a key role in the transformation of organic pollutants when oxygen demand exceeds supply in natural environments. Under such conditions, anoxic and anaerobic degradation mediated by denitrifying or sulphate-reducing bacteria can become a key pathway for the contaminated lands clean up. Actually not much is known about anaerobic bioremediation processes. Anaerobic biodegrading techniques may be really interesting for the future, because they give the possibility of treating contaminated soil directly in their natural status, decreasing the costs concerning the oxygen supply, which usually are the highest ones, and about soil excavations and transports in appropriate sites for a further disposal. The aim of this dissertation work is to characterize the conditions favouring the anaerobic degradation of polycyclic aromatic hydrocarbons. Special focus will be given to the assessment of the various AEA efficiency, the characterization of degradation performance and rates under different redox conditions as well as toxicity monitoring. A comparison with aerobic and anaerobic degradation concerning the same contaminated material is also made to estimate the different biodegradation times.
Resumo:
Bioremediation implies the use of living organisms, primarily microorganisms, to convert environmental contaminants into less toxic forms. The impact of the consequences of hydrocarbon release in the environment maintain a high research interest in the study of microbial metabolisms associated with the biodegradation of aromatic and aliphatic hydrocarbons but also in the analysis of microbial enzymes that can convert petroleum substrates to value-added products. The studies described in this Thesis fall within the research field that directs the efforts into identifying gene/proteins involved in the catabolism of n-alkanes and into studying the regulatory mechanisms leading to their oxidation. In particular the studies were aimed at investigating the molecular aspects of the ability of Rhodococcus sp. BCP1 to grow on aliphatic hydrocarbons as sole carbon and energy sources. We studied the ability of Rhodococcus sp. BCP1 to grow on gaseous (C2-C4), liquid (C5-C16) and solid (C17-C28) n-alkanes that resulted to be biochemically correlated with the activity of one or more monooxygenases. In order to identify the alkane monooxygenase that is involved in the n-alkanes degradation pathway in Rhodococcus sp. BCP1, PCR-based methodology was applied by using degenerate primers targeting AlkB monooxygenase family members. As result, a chromosomal region, including the alkB gene cluster, was cloned from Rhodococcus sp. BCP1 genome. We characterized the products of this alkB gene cluster and the products of the orfs included in the flanking regions by comparative analysis with the homologues in the database. alkB gene expression studies were carried out by RT-PCR and by the construction of a promoter probe vector containing the lacZ gene downstream of the alkB promoter. B-galactosidase assays revealed the alkB promoter activity induced by n-alkanes and by n-alkanes metabolic products. Furthermore, the transcriptional start of alkB gene was determined by primer extension procedure. A proteomic approach was subsequently applied to compare the protein patterns expressed by BCP1 growing on n-butane, n-hexane, n-hexadecane or n-eicosane with the protein pattern expressed by BCP1 growing on succinate. The accumulation of enzymes specifically induced on n-alkanes was determined. These enzymes were identified by tandem mass spectrometry (LC/MS/MS). Finally, a prm gene, homologue to the gene family coding for soluble di-iron monooxygenases (SDIMOs), has been isolated from Rhodococcus sp. BCP1 genome. This gene product could be involved in the degradation of gaseous n-alkanes in this Rhodococcus strain. The versatility in utilizing hydrocarbons and the discovery of new remarkable metabolic activities outline the potential applications of this microorganism in environmental and industrial biotechnologies.
Resumo:
The investigation of phylogenetic diversity and functionality of complex microbial communities in relation to changes in the environmental conditions represents a major challenge of microbial ecology research. Nowadays, particular attention is paid to microbial communities occurring at environmental sites contaminated by recalcitrant and toxic organic compounds. Extended research has evidenced that such communities evolve some metabolic abilities leading to the partial degradation or complete mineralization of the contaminants. Determination of such biodegradation potential can be the starting point for the development of cost effective biotechnological processes for the bioremediation of contaminated matrices. This work showed how metagenomics-based microbial ecology investigations supported the choice or the development of three different bioremediation strategies. First, PCR-DGGE and PCR-cloning approaches served the molecular characterization of microbial communities enriched through sequential development stages of an aerobic cometabolic process for the treatment of groundwater contaminated by chlorinated aliphatic hydrocarbons inside an immobilized-biomass packed bed bioreactor (PBR). In this case the analyses revealed homogeneous growth and structure of immobilized communities throughout the PBR and the occurrence of dominant microbial phylotypes of the genera Rhodococcus, Comamonas and Acidovorax, which probably drive the biodegradation process. The same molecular approaches were employed to characterize sludge microbial communities selected and enriched during the treatment of municipal wastewater coupled with the production of polyhydroxyalkanoates (PHA). Known PHA-accumulating microorganisms identified were affiliated with the genera Zooglea, Acidovorax and Hydrogenophaga. Finally, the molecular investigation concerned communities of polycyclic aromatic hydrocarbon (PAH) contaminated soil subjected to rhizoremediation with willow roots or fertilization-based treatments. The metabolic ability to biodegrade naphthalene, as a representative model for PAH, was assessed by means of stable isotope probing in combination with high-throughput sequencing analysis. The phylogenetic diversity of microbial populations able to derive carbon from naphthalene was evaluated as a function of the type of treatment.
Resumo:
Naphthenic acids (NAs) are an important group of organic pollutants mainly found in hydrocarbon deposits. Although these compounds are toxic, recalcitrant, and persistent in the environment, we are just learning the diversity of microbial communities involved in NAs- degradation and the mechanisms by which NAs are biodegraded. Studies have shown that naphthenic acids are susceptible to biodegradation, which decreases their concentration and reduces toxicity. Nevertheless, little is still known about their biodegradability. The present PhD Thesis’s work is aimed to study the biodegradation of simple model NAs using bacteria strains belonging to the Rhodococcus genus. In particular, Rh. sp. BCP1 and Rh. opacus R7 were able to utilize NAs such as cyclohexane carboxylic acid and cyclopentane carboxylic acid as the sole carbon and energy sources, even at concentrations up to 1000 mg/L. The presence of either substituents or longer carboxylic acid chains attached to the cyclohexane ring negatively affected the growth by pure bacterial cultures. Moreover, BCP1 and R7 cells incubated in the presence of CHCA or CPCA show a general increase of saturated and methyl-substituted fatty acids in their membrane, while the cis-mono-unsaturated ones decrease, as compared to glucose-grown cells. The observed lipid molecules modification during the growth in the presence of NAs is suggested as a possible mechanism to decrease the fluidity of the cell membrane to counteract NAs toxicity. In order to further evaluate this toxic effect on cell features, the morphological changes of BCP1 and R7 cells were also assessed through Transmission Electron Microscopy (TEM), revealing interesting ultrastructural changes. The induction of putative genes, and the construction of a random transposon mutagenesis library were also carried out to reveal the mechanisms by which these Rhodococcus strains can degrade toxic compounds such as NAs.