947 resultados para Hybrid-game Strategies
Resumo:
La perdiz roja es la especie cinegética por excelencia en la península ibérica, cuya cría en cautividad y suelta controlada comenzó a regularse en los años 70 con la aparición del ICONA. La incubación controlada de huevos de perdiz es imprescindible, con fines cinegéticos y de preservación de la especie, y se desarrolla con incubadoras comerciales de pequeña y mediana escala, distribuidas en zonas rurales con acceso limitado y/o deficiente al suministro eléctrico. En nuestras latitudes el aporte de energía solar térmica se perfila como una posibilidad de mejorar la eficiencia energética de éstas y otras instalaciones y de reducir la dependencia energética exterior. Hay diversos factores físico-químicos que influyen en la calidad de la incubación: temperatura, humedad relativa, y concentración de gases, de los cuales sólo los dos primeros son habitualmente supervisados y controlados en este tipo de incubadoras. Esta Tesis surge en el marco de dos proyectos de cooperación con la AECID, y tiene como objetivos: la caracterización espacial de variables relevantes (temperatura (T), humedad relativa (HR)) en la incubadora comercial durante el proceso de incubación, la determinación de la relación existente entre la evolución de variables ambientales durante el proceso de incubación y la tasa de nacimientos (35-77%), así como el diseño y evaluación del sistema de apoyo solar térmico para determinar su potencial de utilización durante las incubaciones comerciales. La instalación de un número limitado de sensores permite la monitorización precisa del proceso de incubación de los huevos. Los resultados más relevantes indican que en incubaciones comerciales los gradientes de T y HR han sido despreciables (1ºC de diferencia entre las posiciones con mayor y menor T media y un 4,5% de diferencia entre las posiciones con mayor y menor HR), mientras que el seguimiento y ajuste (mediante modelos de crecimiento) de la concentración de CO2 (r2 entre 0,948 y 0,987 en las 5 incubaciones, para un total de 43315 huevos) permite valorar la actividad fisiológica de los huevos e incluso predecir la tasa de éxito (nacimientos), basándose en la concentración de CO2 estimada mediante modelos de crecimiento en el día 20 de incubación (r2 entre 0,997 y 0,994 según el modelo de estimación empleado). El sistema ha sido valorado muy positivamente por los productores (Finca Cinegética Dehesa Vieja de Galapagar). El aporte térmico se ha diseñado (con mínima intrusión en el sistema comercial) sobre la base de un sistema de enfriamiento de emergencia original de la incubadora, al que se han incorporado un colector solar, un depósito, un sistema de electroválvulas, una bomba de circulación y sensores de T en distintos puntos del sistema, y cuyo control ha sido automatizado. En esta Tesis se muestra que la contribución solar puede aportar hasta un 42% de las demandas de energía en nuestras condiciones geográficas para una temperatura de consigna dentro de la incubadora de 36.8ºC, sin afectar a la estabilidad de la temperatura. Además, el rendimiento del colector solar se ha acotado entre un 44% y un 85%, de acuerdo con los cálculos termodinámicos; valores que se mantienen dentro del rango aportado por el fabricante (61%). En el futuro se plantea evaluar el efecto de distintas estrategias de control, tales como controladores difusos, que incorporan el conocimiento experto al control automático. ABSTRACT The partridge is the quintessential game species in the Iberian Peninsula, which controlled breeding and release, began to be regulated in the 70s with the emergence of ICONA. The controlled incubation of eggs is essential, and takes place in commercial incubators of small and medium scale, distributed in rural areas with limited and/or inadequate access to power. In our latitudes the contribution of solar thermal energy is emerging as a possibility to improve the energy efficiency of the facilities and to reduce external energy dependence. There are various physicochemical factors influencing the quality of incubation: temperature, relative humidity and concentration of gases, of which only the first two are typically monitored and controlled in such incubators. This PhD comes within the framework of two cooperation projects with AECID and aims: the spatial characterization of relevant variables in a commercial incubator (temperature (T), and relative humidity (HR)), determining the relationships in the changes in environmental variables during incubation and birth rates (35-77%) as well as the design and evaluation of solar thermal support system to determine its potential use during commercial incubations; the installation of a limited number of sensors has allowed accurate monitoring of incubation of eggs. The most relevant results indicate that in commercial incubations, the gradients in T and HR have been negligible (1°C difference between the highest and lowest positions T and average 4.5% difference between the highest and lowest positions HR), while monitoring and fit using growth models of the concentration of CO2 (r2 between 0.948 and 0.987 in 5 incubations, for a total amount of 43,315 eggs) allows assessing the physiological activity of the eggs and even predict the success rate (hatchability), based on the estimated concentration of CO2 by using growth models on day 20 of incubation (r2 between 0.997 and 0.994 depending on the fit model).The system has been highly valued by producers (Finca Cinegética Dehesa Vieja de Galapagar). The hybrid heat system is designed (with minimal intrusion into the commercial system) based on an emergency cooling device, original in the incubator. New elements have been incorporated: a solar collector, a tank, a system of solenoid valves, a circulating pump and T sensors at various points of the system, whose control has been automated. This PhD shows that the solar contribution is responsible for up to 42% of energy demands in our geographical conditions for a setpoint temperature inside the incubator of 36.8ºC, without questioning the stability of the temperature. Furthermore, the efficiency of the solar collector has been bounded between 44% and 85%, according to thermodynamic calculations; values remain within the range provided by the manufacturer (61%). In the future it is proposed to evaluate the effect of different control strategies, such as fuzzy controllers, which incorporate the expertise to automated control.
Resumo:
In recent decades, full electric and hybrid electric vehicles have emerged as an alternative to conventional cars due to a range of factors, including environmental and economic aspects. These vehicles are the result of considerable efforts to seek ways of reducing the use of fossil fuel for vehicle propulsion. Sophisticated technologies such as hybrid and electric powertrains require careful study and optimization. Mathematical models play a key role at this point. Currently, many advanced mathematical analysis tools, as well as computer applications have been built for vehicle simulation purposes. Given the great interest of hybrid and electric powertrains, along with the increasing importance of reliable computer-based models, the author decided to integrate both aspects in the research purpose of this work. Furthermore, this is one of the first final degree projects held at the ETSII (Higher Technical School of Industrial Engineers) that covers the study of hybrid and electric propulsion systems. The present project is based on MBS3D 2.0, a specialized software for the dynamic simulation of multibody systems developed at the UPM Institute of Automobile Research (INSIA). Automobiles are a clear example of complex multibody systems, which are present in nearly every field of engineering. The work presented here benefits from the availability of MBS3D software. This program has proven to be a very efficient tool, with a highly developed underlying mathematical formulation. On this basis, the focus of this project is the extension of MBS3D features in order to be able to perform dynamic simulations of hybrid and electric vehicle models. This requires the joint simulation of the mechanical model of the vehicle, together with the model of the hybrid or electric powertrain. These sub-models belong to completely different physical domains. In fact the powertrain consists of energy storage systems, electrical machines and power electronics, connected to purely mechanical components (wheels, suspension, transmission, clutch…). The challenge today is to create a global vehicle model that is valid for computer simulation. Therefore, the main goal of this project is to apply co-simulation methodologies to a comprehensive model of an electric vehicle, where sub-models from different areas of engineering are coupled. The created electric vehicle (EV) model consists of a separately excited DC electric motor, a Li-ion battery pack, a DC/DC chopper converter and a multibody vehicle model. Co-simulation techniques allow car designers to simulate complex vehicle architectures and behaviors, which are usually difficult to implement in a real environment due to safety and/or economic reasons. In addition, multi-domain computational models help to detect the effects of different driving patterns and parameters and improve the models in a fast and effective way. Automotive designers can greatly benefit from a multidisciplinary approach of new hybrid and electric vehicles. In this case, the global electric vehicle model includes an electrical subsystem and a mechanical subsystem. The electrical subsystem consists of three basic components: electric motor, battery pack and power converter. A modular representation is used for building the dynamic model of the vehicle drivetrain. This means that every component of the drivetrain (submodule) is modeled separately and has its own general dynamic model, with clearly defined inputs and outputs. Then, all the particular submodules are assembled according to the drivetrain configuration and, in this way, the power flow across the components is completely determined. Dynamic models of electrical components are often based on equivalent circuits, where Kirchhoff’s voltage and current laws are applied to draw the algebraic and differential equations. Here, Randles circuit is used for dynamic modeling of the battery and the electric motor is modeled through the analysis of the equivalent circuit of a separately excited DC motor, where the power converter is included. The mechanical subsystem is defined by MBS3D equations. These equations consider the position, velocity and acceleration of all the bodies comprising the vehicle multibody system. MBS3D 2.0 is entirely written in MATLAB and the structure of the program has been thoroughly studied and understood by the author. MBS3D software is adapted according to the requirements of the applied co-simulation method. Some of the core functions are modified, such as integrator and graphics, and several auxiliary functions are added in order to compute the mathematical model of the electrical components. By coupling and co-simulating both subsystems, it is possible to evaluate the dynamic interaction among all the components of the drivetrain. ‘Tight-coupling’ method is used to cosimulate the sub-models. This approach integrates all subsystems simultaneously and the results of the integration are exchanged by function-call. This means that the integration is done jointly for the mechanical and the electrical subsystem, under a single integrator and then, the speed of integration is determined by the slower subsystem. Simulations are then used to show the performance of the developed EV model. However, this project focuses more on the validation of the computational and mathematical tool for electric and hybrid vehicle simulation. For this purpose, a detailed study and comparison of different integrators within the MATLAB environment is done. Consequently, the main efforts are directed towards the implementation of co-simulation techniques in MBS3D software. In this regard, it is not intended to create an extremely precise EV model in terms of real vehicle performance, although an acceptable level of accuracy is achieved. The gap between the EV model and the real system is filled, in a way, by introducing the gas and brake pedals input, which reflects the actual driver behavior. This input is included directly in the differential equations of the model, and determines the amount of current provided to the electric motor. For a separately excited DC motor, the rotor current is proportional to the traction torque delivered to the car wheels. Therefore, as it occurs in the case of real vehicle models, the propulsion torque in the mathematical model is controlled through acceleration and brake pedal commands. The designed transmission system also includes a reduction gear that adapts the torque coming for the motor drive and transfers it. The main contribution of this project is, therefore, the implementation of a new calculation path for the wheel torques, based on performance characteristics and outputs of the electric powertrain model. Originally, the wheel traction and braking torques were input to MBS3D through a vector directly computed by the user in a MATLAB script. Now, they are calculated as a function of the motor current which, in turn, depends on the current provided by the battery pack across the DC/DC chopper converter. The motor and battery currents and voltages are the solutions of the electrical ODE (Ordinary Differential Equation) system coupled to the multibody system. Simultaneously, the outputs of MBS3D model are the position, velocity and acceleration of the vehicle at all times. The motor shaft speed is computed from the output vehicle speed considering the wheel radius, the gear reduction ratio and the transmission efficiency. This motor shaft speed, somehow available from MBS3D model, is then introduced in the differential equations corresponding to the electrical subsystem. In this way, MBS3D and the electrical powertrain model are interconnected and both subsystems exchange values resulting as expected with tight-coupling approach.When programming mathematical models of complex systems, code optimization is a key step in the process. A way to improve the overall performance of the integration, making use of C/C++ as an alternative programming language, is described and implemented. Although this entails a higher computational burden, it leads to important advantages regarding cosimulation speed and stability. In order to do this, it is necessary to integrate MATLAB with another integrated development environment (IDE), where C/C++ code can be generated and executed. In this project, C/C++ files are programmed in Microsoft Visual Studio and the interface between both IDEs is created by building C/C++ MEX file functions. These programs contain functions or subroutines that can be dynamically linked and executed from MATLAB. This process achieves reductions in simulation time up to two orders of magnitude. The tests performed with different integrators, also reveal the stiff character of the differential equations corresponding to the electrical subsystem, and allow the improvement of the cosimulation process. When varying the parameters of the integration and/or the initial conditions of the problem, the solutions of the system of equations show better dynamic response and stability, depending on the integrator used. Several integrators, with variable and non-variable step-size, and for stiff and non-stiff problems are applied to the coupled ODE system. Then, the results are analyzed, compared and discussed. From all the above, the project can be divided into four main parts: 1. Creation of the equation-based electric vehicle model; 2. Programming, simulation and adjustment of the electric vehicle model; 3. Application of co-simulation methodologies to MBS3D and the electric powertrain subsystem; and 4. Code optimization and study of different integrators. Additionally, in order to deeply understand the context of the project, the first chapters include an introduction to basic vehicle dynamics, current classification of hybrid and electric vehicles and an explanation of the involved technologies such as brake energy regeneration, electric and non-electric propulsion systems for EVs and HEVs (hybrid electric vehicles) and their control strategies. Later, the problem of dynamic modeling of hybrid and electric vehicles is discussed. The integrated development environment and the simulation tool are also briefly described. The core chapters include an explanation of the major co-simulation methodologies and how they have been programmed and applied to the electric powertrain model together with the multibody system dynamic model. Finally, the last chapters summarize the main results and conclusions of the project and propose further research topics. In conclusion, co-simulation methodologies are applicable within the integrated development environments MATLAB and Visual Studio, and the simulation tool MBS3D 2.0, where equation-based models of multidisciplinary subsystems, consisting of mechanical and electrical components, are coupled and integrated in a very efficient way.
Resumo:
El sistema de energía eólica-diesel híbrido tiene un gran potencial en la prestación de suministro de energía a comunidades remotas. En comparación con los sistemas tradicionales de diesel, las plantas de energía híbridas ofrecen grandes ventajas tales como el suministro de capacidad de energía extra para "microgrids", reducción de los contaminantes y emisiones de gases de efecto invernadero, y la cobertura del riesgo de aumento inesperado del precio del combustible. El principal objetivo de la presente tesis es proporcionar nuevos conocimientos para la evaluación y optimización de los sistemas de energía híbrido eólico-diesel considerando las incertidumbres. Dado que la energía eólica es una variable estocástica, ésta no puede ser controlada ni predecirse con exactitud. La naturaleza incierta del viento como fuente de energía produce serios problemas tanto para la operación como para la evaluación del valor del sistema de energía eólica-diesel híbrido. Por un lado, la regulación de la potencia inyectada desde las turbinas de viento es una difícil tarea cuando opera el sistema híbrido. Por otro lado, el bene.cio económico de un sistema eólico-diesel híbrido se logra directamente a través de la energía entregada a la red de alimentación de la energía eólica. Consecuentemente, la incertidumbre de los recursos eólicos incrementa la dificultad de estimar los beneficios globales en la etapa de planificación. La principal preocupación del modelo tradicional determinista es no tener en cuenta la incertidumbre futura a la hora de tomar la decisión de operación. Con lo cual, no se prevé las acciones operativas flexibles en respuesta a los escenarios futuros. El análisis del rendimiento y simulación por ordenador en el Proyecto Eólico San Cristóbal demuestra que la incertidumbre sobre la energía eólica, las estrategias de control, almacenamiento de energía, y la curva de potencia de aerogeneradores tienen un impacto significativo sobre el rendimiento del sistema. En la presente tesis, se analiza la relación entre la teoría de valoración de opciones y el proceso de toma de decisiones. La opción real se desarrolla con un modelo y se presenta a través de ejemplos prácticos para evaluar el valor de los sistemas de energía eólica-diesel híbridos. Los resultados muestran que las opciones operacionales pueden aportar un valor adicional para el sistema de energía híbrida, cuando esta flexibilidad operativa se utiliza correctamente. Este marco se puede aplicar en la optimización de la operación a corto plazo teniendo en cuenta la naturaleza dependiente de la trayectoria de la política óptima de despacho, dadas las plausibles futuras realizaciones de la producción de energía eólica. En comparación con los métodos de valoración y optimización existentes, el resultado del caso de estudio numérico muestra que la política de operación resultante del modelo de optimización propuesto presenta una notable actuación en la reducción del con- sumo total de combustible del sistema eólico-diesel. Con el .n de tomar decisiones óptimas, los operadores de plantas de energía y los gestores de éstas no deben centrarse sólo en el resultado directo de cada acción operativa, tampoco deberían tomar decisiones deterministas. La forma correcta es gestionar dinámicamente el sistema de energía teniendo en cuenta el valor futuro condicionado en cada opción frente a la incertidumbre. ABSTRACT Hybrid wind-diesel power systems have a great potential in providing energy supply to remote communities. Compared with the traditional diesel systems, hybrid power plants are providing many advantages such as providing extra energy capacity to the micro-grid, reducing pollution and greenhouse-gas emissions, and hedging the risk of unexpected fuel price increases. This dissertation aims at providing novel insights for assessing and optimizing hybrid wind-diesel power systems considering the related uncertainties. Since wind power can neither be controlled nor accurately predicted, the energy harvested from a wind turbine may be considered a stochastic variable. This uncertain nature of wind energy source results in serious problems for both the operation and value assessment of the hybrid wind-diesel power system. On the one hand, regulating the uncertain power injected from wind turbines is a difficult task when operating the hybrid system. On the other hand, the economic profit of a hybrid wind-diesel system is achieved directly through the energy delivered to the power grid from the wind energy. Therefore, the uncertainty of wind resources has increased the difficulty in estimating the total benefits in the planning stage. The main concern of the traditional deterministic model is that it does not consider the future uncertainty when making the dispatch decision. Thus, it does not provide flexible operational actions in response to the uncertain future scenarios. Performance analysis and computer simulation on the San Cristobal Wind Project demonstrate that the wind power uncertainty, control strategies, energy storage, and the wind turbine power curve have a significant impact on the performance of the system. In this dissertation, the relationship between option pricing theory and decision making process is discussed. A real option model is developed and presented through practical examples for assessing the value of hybrid wind-diesel power systems. Results show that operational options can provide additional value to the hybrid power system when this operational flexibility is correctly utilized. This framework can be applied in optimizing short term dispatch decisions considering the path-dependent nature of the optimal dispatch policy, given the plausible future realizations of the wind power production. Comparing with the existing valuation and optimization methods, result from numerical example shows that the dispatch policy resulting from the proposed optimization model exhibits a remarkable performance in minimizing the total fuel consumption of the wind-diesel system. In order to make optimal decisions, power plant operators and managers should not just focus on the direct outcome of each operational action; neither should they make deterministic decisions. The correct way is to dynamically manage the power system by taking into consideration the conditional future value in each option in response to the uncertainty.
Resumo:
We examine decision making in two-person extensive form game trees using nine treatments that vary matching protocol, payoffs, and payoff information. Our objective is to establish replicable principles of cooperative versus noncooperative behavior that involve the use of signaling, reciprocity, and backward induction strategies, depending on the availability of dominated direct punishing strategies and the probability of repeated interaction with the same partner. Contrary to the predictions of game theory, we find substantial support for cooperation under complete information even in various single-play treatments.
Resumo:
This dissertation interrogates the assertion in postcolonial scholarship, especially from the work of Homi Bhabha that the construction and performance of hybrid identities act as a form of resistance for marginalized communities against structures of oppression. While this study supports this assertion, it also critiques how hybridity fails to address issues of unequal power relations. This has led to an uncritical use of hybridity that reproduces the very idea of static identity which its proponents claim to transcend. Through qualitative study of Chinese members of a Pentecostal church in Malaysia, this study argues that church members engage in "unequal belonging" where they privilege certain elements of their identities over others. In concert with Pierre Bourdieu's conceptions of habitus, field, and capital, unequal belonging highlights how hybridity fails to capture the intersecting and competing loyalties, strategies, and complexities of identity formation on a contextual level. Unequal belonging challenges postcolonial scholars to locate the subtle workings of power and privilege that manifest even among marginalized communities. The study first situates the Chinese through an analysis of the historical legacy of British colonialism that has structured the country's current socio-political configuration along bounded categories of identification. The habitus constrains church members to accept certain Chinese ethnic markers as "givens." Although they face continuous marginalization, interviewee data demonstrates that church members negotiate their Chineseness and construct a "Modern Chinese" ethnic identity as a strategic move away from Chinese stereotypes. Moreover, conversion to Christianity affords church members access to cultural capital. Yet, it is limited and unequal capital. In particular, the "Chinese Chinese," who church members have demarcated as backward and traditional, are unable to gain access to this capital because they lack fluency in English and knowledge in modern, westernized worldviews. Unequal belonging nuances monolithic conceptions of hybridity. It demonstrates how church members' privilege of Christianity over Chineseness exposes the complex processes of power and privilege that makes westernized-English-speaking Chinese Christians culturally "higher" than non-English-speaking, non-Christian, Chinese. This study provides significant contribution to the complex aspect of hybridity where it is both a site of resistance and oppression.
Resumo:
The low complexity of IIR adaptive filters (AFs) is specially appealing to realtime applications but some drawbacks have been preventing their widespread use so far. For gradient based IIR AFs, adverse operational conditions cause convergence problems in system identification scenarios: underdamped and clustered poles, undermodelling or non-white input signals lead to error surfaces where the adaptation nearly stops on large plateaus or get stuck at sub-optimal local minima that can not be identified as such a priori. Furthermore, the non-stationarity in the input regressor brought by the filter recursivity and the approximations made by the update rules of the stochastic gradient algorithms constrain the learning step size to small values, causing slow convergence. In this work, we propose IIR performance enhancement strategies based on hybrid combinations of AFs that achieve higher convergence rates than ordinary IIR AFs while keeping the stability.
Resumo:
"April 2000."
Resumo:
In this paper, we consider dynamic programming for the election timing in the majoritarian parliamentary system such as in Australia, where the government has a constitutional right to call an early election. This right can give the government an advantage to remain in power for as long as possible by calling an election, when its popularity is high. On the other hand, the opposition's natural objective is to gain power, and it will apply controls termed as "boosts" to reduce the chance of the government being re-elected by introducing policy and economic responses. In this paper, we explore equilibrium solutions to the government, and the opposition strategies in a political game using stochastic dynamic programming. Results are given in terms of the expected remaining life in power, call and boost probabilities at each time at any level of popularity.
Resumo:
Strategies to introduce genes into non-embryogenic plants for complementation of a mutation are described and tested on tetraploid alfalfa (Medicago sativa). Genes conditioning embryogenic potential, a mutant phenotype, and a gene to complement the mutation can be combined using several different crossing and selection steps. In the successful strategy used here, the M. sativa genotype MnNC-1008(NN) carrying the recessive non-nodulating mutant allele nn(1) was crossed with the highly embryogenic alfalfa line Regen S and embryogenic hybrid individuals were identified from the F1 progeny. After transformation of these hybrids with the wild-type gene (NORK), an F2 generation segregating for the mutation and transgene were produced. Plants homozygous for the mutant allele and carrying the wild-type NORK transgene could form root nodules after inoculation with Sinorhizobium meliloti demonstrating successful complementation of the nn(1) mutation.
Resumo:
Mental simulations and analogies have been identified as powerful learning tools for RNPs. Furthermore, visuals in advertising have recently been conceptualized as meaningful sources of information as opposed to peripheral cues and thus may help consumers learn about RNPs. The study of visual attention may also contribute to understanding the links between conceptual and perceptual analyses when learning for a RNP. Two conceptual models are developed. the first model consists of causal relationships between the attributes of advertising stimuli for RNPs and consumer responses, as well as mediating influences. The second model focuses on the role of visual attention in product comprehension as a response to advertising stimuli. Two experiments are conducted: a Web-Experiment and an eye-tracking experiment. The first experiment (858 subjects) examines the effect of learning strategies (mental simulation vs. analogy vs. no analogy/no mental simulation) and presentation formats (words vs. pictures) on individual responses. The mediating role of emotions is assessed. The second experiment investigates the effect of learning strategies and presentation formats on product comprehension, along with the role of attention (17 subjects). The findings from experiment 1 indicate that learning strategies and presentation formats can either enhance or undermine the effect of advertising stimuli on individual responses. Moreover, the nature of the product (i.e. hedonic vs. utilitarian vs. hybrid) should be considered when designing communications for RNPs. The mediating role of emotions is verified. Experiment 2 suggests that an increase in attention to the message may either reflect enhanced comprehension or confusion.
Resumo:
An antagonistic differential game of hyperbolic type with a separable linear vector pay-off function is considered. The main result is the description of all ε-Slater saddle points consisting of program strategies, program ε-Slater maximins and minimaxes for each ε ∈ R^N > for this game. To this purpose, the considered differential game is reduced to find the optimal program strategies of two multicriterial problems of hyperbolic type. The application of approximation enables us to relate these problems to a problem of optimal program control, described by a system of ordinary differential equations, with a scalar pay-off function. It is found that the result of this problem is not changed, if the players use positional or program strategies. For the considered differential game, it is interesting that the ε-Slater saddle points are not equivalent and there exist two ε-Slater saddle points for which the values of all components of the vector pay-off function at one of them are greater than the respective components of the other ε-saddle point.
Resumo:
The modern grid system or the smart grid is likely to be populated with multiple distributed energy sources, e.g. wind power, PV power, Plug-in Electric Vehicle (PEV). It will also include a variety of linear and nonlinear loads. The intermittent nature of renewable energies like PV, wind turbine and increased penetration of Electric Vehicle (EV) makes the stable operation of utility grid system challenging. In order to ensure a stable operation of the utility grid system and to support smart grid functionalities such as, fault ride-through, frequency response, reactive power support, and mitigation of power quality issues, an energy storage system (ESS) could play an important role. A fast acting bidirectional energy storage system which can rapidly provide and absorb power and/or VARs for a sufficient time is a potentially valuable tool to support this functionality. Battery energy storage systems (BESS) are one of a range suitable energy storage system because it can provide and absorb power for sufficient time as well as able to respond reasonably fast. Conventional BESS already exist on the grid system are made up primarily of new batteries. The cost of these batteries can be high which makes most BESS an expensive solution. In order to assist moving towards a low carbon economy and to reduce battery cost this work aims to research the opportunities for the re-use of batteries after their primary use in low and ultra-low carbon vehicles (EV/HEV) on the electricity grid system. This research aims to develop a new generation of second life battery energy storage systems (SLBESS) which could interface to the low/medium voltage network to provide necessary grid support in a reliable and in cost-effective manner. The reliability/performance of these batteries is not clear, but is almost certainly worse than a new battery. Manufacturers indicate that a mixture of gradual degradation and sudden failure are both possible and failure mechanisms are likely to be related to how hard the batteries were driven inside the vehicle. There are several figures from a number of sources including the DECC (Department of Energy and Climate Control) and Arup and Cenex reports indicate anything from 70,000 to 2.6 million electric and hybrid vehicles on the road by 2020. Once the vehicle battery has degraded to around 70-80% of its capacity it is considered to be at the end of its first life application. This leaves capacity available for a second life at a much cheaper cost than a new BESS Assuming a battery capability of around 5-18kWhr (MHEV 5kWh - BEV 18kWh battery) and approximate 10 year life span, this equates to a projection of battery storage capability available for second life of >1GWhrs by 2025. Moreover, each vehicle manufacturer has different specifications for battery chemistry, number and arrangement of battery cells, capacity, voltage, size etc. To enable research and investment in this area and to maximize the remaining life of these batteries, one of the design challenges is to combine these hybrid batteries into a grid-tie converter where their different performance characteristics, and parameter variation can be catered for and a hot swapping mechanism is available so that as a battery ends it second life, it can be replaced without affecting the overall system operation. This integration of either single types of batteries with vastly different performance capability or a hybrid battery system to a grid-tie 3 energy storage system is different to currently existing work on battery energy storage systems (BESS) which deals with a single type of battery with common characteristics. This thesis addresses and solves the power electronic design challenges in integrating second life hybrid batteries into a grid-tie energy storage unit for the first time. This study details a suitable multi-modular power electronic converter and its various switching strategies which can integrate widely different batteries to a grid-tie inverter irrespective of their characteristics, voltage levels and reliability. The proposed converter provides a high efficiency, enhanced control flexibility and has the capability to operate in different operational modes from the input to output. Designing an appropriate control system for this kind of hybrid battery storage system is also important because of the variation of battery types, differences in characteristics and different levels of degradations. This thesis proposes a generalised distributed power sharing strategy based on weighting function aims to optimally use a set of hybrid batteries according to their relative characteristics while providing the necessary grid support by distributing the power between the batteries. The strategy is adaptive in nature and varies as the individual battery characteristics change in real time as a result of degradation for example. A suitable bidirectional distributed control strategy or a module independent control technique has been developed corresponding to each mode of operation of the proposed modular converter. Stability is an important consideration in control of all power converters and as such this thesis investigates the control stability of the multi-modular converter in detailed. Many controllers use PI/PID based techniques with fixed control parameters. However, this is not found to be suitable from a stability point-of-view. Issues of control stability using this controller type under one of the operating modes has led to the development of an alternative adaptive and nonlinear Lyapunov based control for the modular power converter. Finally, a detailed simulation and experimental validation of the proposed power converter operation, power sharing strategy, proposed control structures and control stability issue have been undertaken using a grid connected laboratory based multi-modular hybrid battery energy storage system prototype. The experimental validation has demonstrated the feasibility of this new energy storage system operation for use in future grid applications.
Resumo:
The high cost of batteries has led to investigations in using second-life ex-transportation batteries for grid support applications. Vehicle manufacturers currently all have different specifications for battery chemistry, arrangement of cells, capacity and voltage. With anticipated new developments in battery chemistry which could also affect these parameters, there are, as yet, no standards defining parameters in second life applications. To overcome issues relating to sizing and to prevent future obsolescence for the rest of the energy storage system, a cascaded topology with an operating envelope design approach has been used to connect together modules. This topology offers advantages in terms of system reliability. The design methodology is validated through a set of experimental results resulting in the creation of surface maps looking at the operation of the converter (efficiency and inductor ripple current). The use of a pre-defined module operating envelope also offers advantages for developing new operational strategies for systems with both hybrid battery energy systems and also hybrid systems including other energy sources such as solar power.
Resumo:
This research traces the implementation of an information system in the form of ERP modules covering tenant and contract management in a Chinese service company. Misalignments between the ERP system specification and user needs led to the adoption of informal processes within the organisation. These processes are facilitated within an informal organisational structure and are based on human interactions undertaken within the formal organisation. Rather than to attempt to suppress the emergence of the informal organisation the company decided to channel the energies of staff involved in informal processes towards organisational goals. The company achieved this by harnessing the capabilities of what we term a hybrid ERP system, combining the functionality of a traditional (formal) ERP installation with the capabilities of Enterprise Social Software (ESS). However the company recognised that the successful operation of the hybrid ERP system would require a number of changes in organisational design in areas such as reporting structures and communication channels. A narrative provided by interviews with company personnel is thematised around the formal and informal characteristics of the organisation as defined in the literature. This leads to a definition of the characteristics of the hybrid organisation and strategies for enabling a hybrid organisation, facilitated by a hybrid ERP system, which directs formal and informal behaviour towards organisational goals and provides a template for future hybrid implementations.
Resumo:
The aim of this paper is to survey the game theory modelling of the behaviour of global players in mitigation and adaptation related to climate change. Three main fields are applied for the specific aspects of temperature rise: behaviour games, CPR problem and negotiation games. The game theory instruments are useful in analyzing strategies in uncertain circumstances, such as the occurrence and impacts of climate change. To analyze the international players’ relations, actions, attitude toward carbon emission, negotiation power and motives, several games are applied for the climate change in this paper. The solution is surveyed, too, for externality problem.