815 resultados para Human vision system
Resumo:
Un gran número de empresas están inmersas actualmente en espacios de mercado conocidos y saturados de competidores. La innovación constituye una de las principales alternativas de las empresas para encontrar su posicionamiento estratégico y adaptarse a los cambios del entorno (Kim & Mauborgne, 2005). Igualmente, Demirci (2013) asegura que la cultura es un factor clave en la innovación, dado que está fuertemente asociada con los valores, actitudes, comportamientos y prácticas organizacionales. Esta investigación abarca el estudio de la cultura organizacional y la innovación en el marco de estrategias de cooperación inter-organizacional donde se plantea que el grado de cooperación que existe entre las empresas tiene un efecto sobre los valores culturales y la incorporación de innovaciones en cada organización. Para esto se llevó a cabo una investigación cuantitativa con un alcance de tipo descriptivo y de carácter no experimental y trans seccional, cuya unidad de análisis fueron 20 empresas de la red ParqueSoft Manizales. Para la medición de las variables de innovación se aplicó un instrumento basado en el Manual de Oslo de la OECD y Eurostat (2005) el cual contempla la innovación de producto, proceso, mercadotecnia y organización. A nivel de los valores culturales, la medición se realizó a través de un cuestionario inspirado en el modelo de Hofstede (1980). Los resultados obtenidos permiten demostrar que existe un grado de relación entre la cooperación y los valores culturales ‘distancia al poder’ y ‘tolerancia a la incertidumbre´, sin poder determinar la relación con la generación de innovación de producto, proceso, mercadotecnia y organización, así como con las otras dimensiones del modelo de valores de Hofstede.
Resumo:
Model based vision allows use of prior knowledge of the shape and appearance of specific objects to be used in the interpretation of a visual scene; it provides a powerful and natural way to enforce the view consistency constraint. A model based vision system has been developed within ESPRIT VIEWS: P2152 which is able to classify and track moving objects (cars and other vehicles) in complex, cluttered traffic scenes. The fundamental basis of the method has been previously reported. This paper presents recent developments which have extended the scope of the system to include (i) multiple cameras, (ii) variable camera geometry, and (iii) articulated objects. All three enhancements have easily been accommodated within the original model-based approach
Resumo:
As we move through the world, our eyes acquire a sequence of images. The information from this sequence is sufficient to determine the structure of a three-dimensional scene, up to a scale factor determined by the distance that the eyes have moved [1, 2]. Previous evidence shows that the human visual system accounts for the distance the observer has walked [3,4] and the separation of the eyes [5-8] when judging the scale, shape, and distance of objects. However, in an immersive virtual-reality environment, observers failed to notice when a scene expanded or contracted, despite having consistent information about scale from both distance walked and binocular vision. This failure led to large errors in judging the size of objects. The pattern of errors cannot be explained by assuming a visual reconstruction of the scene with an incorrect estimate of interocular separation or distance walked. Instead, it is consistent with a Bayesian model of cue integration in which the efficacy of motion and disparity cues is greater at near viewing distances. Our results imply that observers are more willing to adjust their estimate of interocular separation or distance walked than to accept that the scene has changed in size.
Resumo:
The perceived displacement of motion-defined contours in peripheral vision was examined in four experiments. In Experiment 1, in line with Ramachandran and Anstis' finding [Ramachandran, V. S., & Anstis, S. M. (1990). Illusory displacement of equiluminous kinetic edges. Perception, 19, 611-616], the border between a field of drifting dots and a static dot pattern was apparently displaced in the same direction as the movement of the dots. When a uniform dark area was substituted for the static dots, a similar displacement was found, but this was smaller and statistically insignificant. In Experiment 2, the border between two fields of dots moving in opposite directions was displaced in the direction of motion of the dots in the more eccentric field, so that the location of a boundary defined by a diverging pattern is perceived as more eccentric, and that defined by a converging as less eccentric. Two explanations for this effect (that the displacement reflects a greater weight given to the more eccentric motion, or that the region containing stronger centripetal motion components expands perceptually into that containing centrifugal motion) were tested in Experiment 3, by varying the velocity of the more eccentric region. The results favoured the explanation based on the expansion of an area in centripetal motion. Experiment 4 showed that the difference in perceived location was unlikely to be due to differences in the discriminability of contours in diverging and converging pattems, and confirmed that this effect is due to a difference between centripetal and centrifugal motion rather than motion components in other directions. Our result provides new evidence for a bias towards centripetal motion in human vision, and suggests that the direction of motion-induced displacement of edges is not always in the direction of an adjacent moving pattern. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents results to indicate the potential applications of a direct connection between the human nervous system and a computer network. Actual experimental results obtained from a human subject study are given, with emphasis placed on the direct interaction between the human nervous system and possible extra-sensory input. An brief overview of the general state of neural implants is given, as well as a range of application areas considered. An overall view is also taken as to what may be possible with implant technology as a general purpose human-computer interface for the future.
Resumo:
In this paper an attempt is described to increase the range of human sensory capabilities by means of implant technology. The key aim is to create an additional sense by feeding signals directly to the human brain, via the nervous system rather than via a presently operable human sense. Neural implant technology was used to directly interface a human nervous system with a computer in a one off trial. The output from active ultrasonic sensors was then employed to directly stimulate the human nervous system. An experimental laboratory set up was used as a test bed to assess the usefulness of this sensory addition.
Resumo:
A look is taken here at how the use of implant technology is rapidly diminishing the effects of certain neural illnesses and distinctly increasing the range of abilities of those affected. An indication is given of a number of problem areas in which such technology has already had a profound effect, a key element being the need for a clear interface linking the human brain directly with a computer. In order to assess the possible opportunities, both human and animal studies are reported on. The main thrust of the paper is however a discussion of neural implant experimentation linking the human nervous system bi-directionally with the internet. With this in place neural signals were transmitted to various technological devices to directly control them, in some cases via the internet, and feedback to the brain was obtained from such as the fingertips of a robot hand, ultrasonic (extra) sensory input and neural signals directly from another human's nervous system. Consideration is given to the prospects for neural implant technology in the future, both in the short term as a therapeutic device and in the long term as a form of enhancement, including the realistic potential for thought communication potentially opening up commercial opportunities. Clearly though, an individual whose brain is part human - part machine can have abilities that far surpass those with a human brain alone. Will such an individual exhibit different moral and ethical values to those of a human.? If so, what effects might this have on society?
Resumo:
In this paper results are shown to indicate the efficacy of a direct connection between the human nervous system and a computer network. Experimental results obtained thus far from a study lasting for over 3 months are presented, with particular emphasis placed on the direct interaction between the human nervous system and a piece of wearable technology. An overview of the present state of neural implants is given, as well as a range of application areas considered thus far. A view is also taken as to what may be possible with implant technology as a general purpose human-computer interface for the future.
Resumo:
A look is taken here at how the use of implant technology is rapidly diminishing the effects of certain neural illnesses and distinctly increasing the range of abilities of those affected. An indication is given of a number of problem areas in which such technology has already had a profound effect, a key element being the need for a clear interface linking the human brain directly with a computer. In order to assess the possible opportunities, both human and animal studies are reported on. The main thrust of the paper is, however, a discussion of neural implant experimentation linking the human nervous system bi-directionally with the internet. With this in place, neural signals were transmitted to various technological devices to directly control them, in some cases via the internet, and feedback to the brain was obtained from, for example, the fingertips of a robot hand, and ultrasonic (extra) sensory input and neural signals directly from another human's nervous system. Consideration is given to the prospects for neural implant technology in the future, both in the short term as a therapeutic device and in the long term as a form of enhancement, including the realistic potential for thought communication-potentially opening up commercial opportunities. Clearly though, an individual whose brain is part human-part machine can have abilities that far surpass those with a human brain alone. Will such an individual exhibit different moral and ethical values from those of a human? If so, what effects might this have on society? (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Previous studies have demonstrated that when we observe somebody else executing an action many areas of our own motor systems are active. It has been argued that these motor activations are evidence that we motorically simulate observed actions; this motoric simulation may support various functions such as imitation and action understanding. However, whether motoric simulation is indeed the function of motor activations during action observation is controversial, due to inconsistency in findings. Previous studies have demonstrated dynamic modulations in motor activity when we execute actions. Therefore, if we do motorically simulate observed actions, our motor systems should also be modulated dynamically, and in a corresponding fashion, during action observation. Using magnetoencephalography (MEG), we recorded the cortical activity of human participants while they observed actions performed by another person. Here, we show that activity in the human motor system is indeed modulated dynamically during action observation. The finding that activity in the motor system is modulated dynamically when observing actions can explain why studies of action observation using functional magnetic resonance imaging (fMRI) have reported conflicting results, and is consistent with the hypothesis that we motorically simulate observed actions.
Resumo:
This paper presents an application study into the use of a bi-directional link with the human nervous system by means of an implant, positioned through neurosurgery. Various applications are described including the interaction of neural signals with an articulated hand, a group of cooperative autonomous robots and to control the movement of a mobile platform. The microelectrode array implant itself is described in detail. Consideration is given to a wider range of possible robot mechanisms, which could interact with the human nervous system through the same technique.
Resumo:
In this paper we report the degree of reliability of image sequences taken by off-the-shelf TV cameras for modeling camera rotation and reconstructing 3D structure using computer vision techniques. This is done in spite of the fact that computer vision systems usually use imaging devices that are specifically designed for the human vision. Our scenario consists of a static scene and a mobile camera moving through the scene. The scene is any long axial building dominated by features along the three principal orientations and with at least one wall containing prominent repetitive planar features such as doors, windows bricks etc. The camera is an ordinary commercial camcorder moving along the axial axis of the scene and is allowed to rotate freely within the range +/- 10 degrees in all directions. This makes it possible that the camera be held by a walking unprofessional cameraman with normal gait, or to be mounted on a mobile robot. The system has been tested successfully on sequence of images of a variety of structured, but fairly cluttered scenes taken by different walking cameramen. The potential application areas of the system include medicine, robotics and photogrammetry.
Resumo:
This paper describes the design, implementation and testing of a high speed controlled stereo “head/eye” platform which facilitates the rapid redirection of gaze in response to visual input. It details the mechanical device, which is based around geared DC motors, and describes hardware aspects of the controller and vision system, which are implemented on a reconfigurable network of general purpose parallel processors. The servo-controller is described in detail and higher level gaze and vision constructs outlined. The paper gives performance figures gained both from mechanical tests on the platform alone, and from closed loop tests on the entire system using visual feedback from a feature detector.
Resumo:
Research in the last four decades has brought a considerable advance in our understanding of how the brain synthesizes information arising from different sensory modalities. Indeed, many cortical and subcortical areas, beyond those traditionally considered to be ‘associative,’ have been shown to be involved in multisensory interaction and integration (Ghazanfar and Schroeder 2006). Visuo-tactile interaction is of particular interest, because of the prominent role played by vision in guiding our actions and anticipating their tactile consequences in everyday life. In this chapter, we focus on the functional role that visuo-tactile processing may play in driving two types of body-object interactions: avoidance and approach. We will first review some basic features of visuo-tactile interactions, as revealed by electrophysiological studies in monkeys. These will prove to be relevant for interpreting the subsequent evidence arising from human studies. A crucial point that will be stressed is that these visuo-tactile mechanisms have not only sensory, but also motor-related activity that qualifies them as multisensory-motor interfaces. Evidence will then be presented for the existence of functionally homologous processing in the human brain, both from neuropsychological research in brain-damaged patients and in healthy participants. The final part of the chapter will focus on some recent studies in humans showing that the human motor system is provided with a multisensory interface that allows for continuous monitoring of the space near the body (i.e., peripersonal space). We further demonstrate that multisensory processing can be modulated on-line as a consequence of interacting with objects. This indicates that, far from being passive, the monitoring of peripersonal space is an active process subserving actions between our body and objects located in the space around us.