931 resultados para Human genome


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In response to scientific breakthroughs in biotechnology, the development of new technologies, and the demands of a hungry capitalist marketplace, patent law has expanded to accommodate a range of biological inventions. There has been much academic and public debate as to whether gene patents have a positive impact upon research and development, health-care, and the protection of the environment. In a satire of prevailing patenting practices, the English poet and part-time casino waitress, Donna MacLean, sought a patent application - GB0000180.0 - in respect of herself. She explained that she had satisfied the usual patent criteria - in that she was novel, inventive, and useful: It has taken 30 years of hard labor for me to discover and invent myself, and now I wish to protect my invention from unauthorized exploitation, genetic or otherwise. I am new: I have led a private existence and I have not made the invention of myself public. I am not obvious (2000: 18). MacLean said she had many industrial applications. ’For example, my genes can be used in medical research to extremely profitable ends - I therefore wish to have sole control of my own genetic material' (2000: 18). She observed in an interview: ’There's a kind of unpleasant, grasping, greedy atmosphere at the moment around the mapping of the human genome ... I wanted to see if a human being could protect their own genes in law' (Meek, 2000). This special issue of Law in Context charts a new era in the long-standing debate over biological inventions. In the wake of the expansion of patentable subject matter, there has been great strain placed upon patent criteria - such as ’novelty', ’inventive step', and ’utility'. Furthermore, there has been a new focus upon legal doctrines which facilitate access to patented inventions - like the defence of experimental use, the ’Bolar' exception, patent pooling, and compulsory licensing. There has been a concerted effort to renew patent law with an infusion of ethical principles dealing with informed consent and benefit sharing. There has also been a backlash against the commercialisation of biological inventions, and a call by some activists for the abolition of patents on genetic inventions. This collection considers a wide range of biological inventions - ranging from micro-organisms, plants and flowers and transgenic animals to genes, express sequence tags, and research tools, as well as genetic diagnostic tests and pharmaceutical drugs. It is thus an important corrective to much policy work, which has been limited in its purview to merely gene patents and biomedical research. This collection compares and contrasts the various approaches of a number of jurisdictions to the legal problems in respect of biological inventions. In particular, it looks at the complexities of the 1998 European Union Directive on the Legal Protection of Biotechnological Inventions, as well as decisions of member states, such as the Netherlands, and peripheral states, like Iceland. The edition considers US jurisprudence on patent law and policy, as well as recent developments in Canada. It also focuses upon recent developments in Australia - especially in the wake of parallel policy inquiries into gene patents and access to genetic resources.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article examines a series of controversies within the life sciences over data sharing. Part 1 focuses upon the agricultural biotechnology firm Syngenta publishing data on the rice genome in the journal Science, and considers proposals to reform scientific publishing and funding to encourage data sharing. Part 2 examines the relationship between intellectual property rights and scientific publishing, in particular copyright protection of databases, and evaluates the declaration of the Human Genome Organisation that genomic databases should be global public goods. Part 3 looks at varying opinions on the information function of patent law, and then considers the proposals of Patrinos and Drell to provide incentives for private corporations to release data into the public domain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article considers the debate over patent law, informed consent, and benefit-sharing in the context of biomedical research in respect of Indigenous communities. In particular, it focuses upon three key controversies over large-scale biology projects, involving Indigenous populations. These case studies are representative of the tensions between research organisations, Indigenous communities, and funding agencies. Section two considers the aims and origins of the Human Genome Diversity Project, and criticisms levelled against the venture by Indigenous peak bodies and anti-biotechnology groups, such as the Rural Advancement Foundation International. It examines the ways in which the United Nations Educational, Scientific, and Cultural Organization (UNESCO) grappled with questions of patent law, informed consent, and benefit sharing in relation to population genetics. Section three focuses upon the ongoing litigation in Tilousi v. Arizona State University, and the Havasupai Tribe v. Arizona State University. In this matter, the Havasupai tribe from the Grand Canyon in the United States brought legal action against the Arizona State University and its researchers for using genetic data for unauthorised purposes - namely, genetic research into schizophrenia, migration, and inbreeding. The litigation raises questions about informed consent, negligence, and larger matters of human rights. Section four explores the legal and ethical issues raised by the Genographic Project. It considers the aims and objectives of the venture, and the criticisms levelled against it by Indigenous communities, and anti-biotechnology groups. It examines the response of the United Nations Permanent Forum on Indigenous Issues to the Genographic Project. It charts the debate over the protection of traditional knowledge in various international fora. The conclusion recommends a number of measures to better regulate large-scale biology projects involving the participation of Indigenous communities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In response to scientific breakthroughs in biotechnology, the development of new technologies, and the demands of a hungry capitalist marketplace, patent law has expanded to accommodate a range of biological inventions. There has been much academic and public debate as to whether gene patents have a positive impact upon research and development, health-care, and the protection of the environment. In a satire of prevailing patenting practices, the English poet and part-time casino waitress, Donna MacLean, sought a patent application - GB0000180.0 - in respect of herself. She explained that she had satisfied the usual patent criteria - in that she was novel, inventive, and useful: It has taken 30 years of hard labor for me to discover and invent myself, and now I wish to protect my invention from unauthorized exploitation, genetic or otherwise. I am new: I have led a private existence and I have not made the invention of myself public. I am not obvious (2000: 18). MacLean said she had many industrial applications. 'For example, my genes can be used in medical research to extremely profitable ends - I therefore wish to have sole control of my own genetic material' (2000: 18). She observed in an interview: 'There's a kind of unpleasant, grasping, greedy atmosphere at the moment around the mapping of the human genome ... I wanted to see if a human being could protect their own genes in law' (Meek, 2000). This special issue of Law in Context charts a new era in the long-standing debate over biological inventions. In the wake of the expansion of patentable subject matter, there has been great strain placed upon patent criteria - such as 'novelty', 'inventive step', and 'utility'. Furthermore, there has been a new focus upon legal doctrines which facilitate access to patented inventions - like the defence of experimental use, the 'Bolar' exception, patent pooling, and compulsory licensing. There has been a concerted effort to renew patent law with an infusion of ethical principles dealing with informed consent and benefit sharing. There has also been a backlash against the commercialisation of biological inventions, and a call by some activists for the abolition of patents on genetic inventions. This collection considers a wide range of biological inventions - ranging from micro-organisms, plants and flowers and transgenic animals to genes, express sequence tags, and research tools, as well as genetic diagnostic tests and pharmaceutical drugs. It is thus an important corrective to much policy work, which has been limited in its purview to merely gene patents and biomedical research. This collection compares and contrasts the various approaches of a number of jurisdictions to the legal problems in respect of biological inventions. In particular, it looks at the complexities of the 1998 European Union Directive on the Legal Protection of Biotechnological Inventions, as well as decisions of member states, such as the Netherlands, and peripheral states, like Iceland. The edition considers US jurisprudence on patent law and policy, as well as recent developments in Canada. It also focuses upon recent developments in Australia - especially in the wake of parallel policy inquiries into gene patents and access to genetic resources.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It's akin to the old Spanish, English and Portuguese explorers. They would take their boats until they found some edge of land, then they would go up and plant the flag of their king or queen. They didn't know what they'd discovered; how big it is, where it goes to - but they would claim it anyway. David Korn of the Association of American Medical Colleges This article analyses recent litigation over patent law and expressed sequence tags (ESTs). In the case of In re Fisher, the United States Court of Appeals for the Federal Circuit engaged in judicial consideration of the revised utility guidelines of the United States Patent and Trademark Office (USPTO). In this matter, the agricultural biotechnology company Monsanto sought to patent ESTs in maize plants. A patent examiner and the Board of Patent Appeals and Interferences had doubted whether the patent application was useful. Monsanto appealed against the rulings of the USPTO. A number of amicus curiae intervened in the matter in support of the USPTO - including Genentech, Affymetrix, Dow AgroSciences, Eli Lilly, the National Academy of Sciences, and the Association of American Medical Colleges. The majority of the Court of Appeals for the Federal Circuit supported the position of the USPTO, and rejected the patent application on the grounds of utility. The split decision highlighted institutional tensions over the appropriate thresholds for patent criteria - such as novelty, non-obviousness, and utility. The litigation raised larger questions about the definition of research tools, the incremental nature of scientific progress, and the role of patent law in innovation policy. The decision of In re Fisher will have significant ramifications for gene patents, in the wake of the human genome project. Arguably, the USPTO utility guidelines need to be reinforced by a tougher application of the standards of novelty and non-obviousness in respect of gene patents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis. © 2011 Macmillan Publishers Limited. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1–3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region4, 5, 6, 7, 8, 9, 10, 11. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods—recursive partitioning and regression...

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hair morphology is highly differentiated between populations and among people of European ancestry. Whereas hair morphology in East Asian populations has been studied extensively, relatively little is known about the genetics of this trait in Europeans. We performed a genome-wide association scan for hair morphology (straight, wavy, curly) in three Australian samples of European descent. All three samples showed evidence of association implicating the Trichohyalin gene (TCHH), which is expressed in the developing inner root sheath of the hair follicle, and explaining approximately 6% of variance (p=1.5x10(-31)). These variants are at their highest frequency in Northern Europeans, paralleling the distribution of the straight-hair EDAR variant in Asian populations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Context: Identifying susceptibility genes for schizophrenia may be complicated by phenotypic heterogeneity, with some evidence suggesting that phenotypic heterogeneity reflects genetic heterogeneity. Objective: To evaluate the heritability and conduct genetic linkage analyses of empirically derived, clinically homogeneous schizophrenia subtypes. Design: Latent class and linkage analysis. Setting: Taiwanese field research centers. Participants: The latent class analysis included 1236 Han Chinese individuals with DSM-IV schizophrenia. These individuals were members of a large affected-sibling-pair sample of schizophrenia (606 ascertained families), original linkage analyses of which detected a maximum logarithm of odds (LOD) of 1.8 (z = 2.88) on chromosome 10q22.3. Main Outcome Measures: Multipoint exponential LOD scores by latent class assignment and parametric heterogeneity LOD scores. Results: Latent class analyses identified 4 classes, with 2 demonstrating familial aggregation. The first (LC2) described a group with severe negative symptoms, disorganization, and pronounced functional impairment, resembling “deficit schizophrenia.” The second (LC3) described a group with minimal functional impairment, mild or absent negative symptoms, and low disorganization. Using the negative/deficit subtype, we detected genome-wide significant linkage to 1q23-25 (LOD = 3.78, empiric genome-wide P = .01). This region was not detected using the DSM-IV schizophrenia diagnosis, but has been strongly implicated in schizophrenia pathogenesis by previous linkage and association studies.Variants in the 1q region may specifically increase risk for a negative/deficit schizophrenia subtype. Alternatively, these results may reflect increased familiality/heritability of the negative class, the presence of multiple 1q schizophrenia risk genes, or a pleiotropic 1q risk locus or loci, with stronger genotype-phenotype correlation with negative/deficit symptoms. Using the second familial latent class, we identified nominally significant linkage to the original 10q peak region. Conclusion: Genetic analyses of heritable, homogeneous phenotypes may improve the power of linkage and association studies of schizophrenia and thus have relevance to the design and analysis of genome-wide association studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Blood cells participate in vital physiological processes, and their numbers are tightly regulated so that homeostasis is maintained. Disruption of key regulatory mechanisms underlies many blood-related Mendelian diseases but also contributes to more common disorders, including atherosclerosis. We searched for quantitative trait loci (QTL) for hematology traits through a whole-genome association study, because these could provide new insights into both hemopoeitic and disease mechanisms. We tested 1.8 million variants for association with 13 hematology traits measured in 6015 individuals from the Australian and Dutch populations. These traits included hemoglobin composition, platelet counts, and red blood cell and white blood cell indices. We identified three regions of strong association that, to our knowledge, have not been previously reported in the literature. The first was located in an intergenic region of chromosome 9q31 near LPAR1, explaining 1.5% of the variation in monocyte counts (best SNP rs7023923, p=8.9x10(-14)). The second locus was located on chromosome 6p21 and associated with mean cell erythrocyte volume (rs12661667, p=1.2x10(-9), 0.7% variance explained) in a region that spanned five genes, including CCND3, a member of the D-cyclin gene family that is involved in hematopoietic stem cell expansion. The third region was also associated with erythrocyte volume and was located in an intergenic region on chromosome 6q24 (rs592423, p=5.3x10(-9), 0.6% variance explained). All three loci replicated in an independent panel of 1543 individuals (p values=0.001, 9.9x10(-5), and 7x10(-5), respectively). The identification of these QTL provides new opportunities for furthering our understanding of the mechanisms regulating hemopoietic cell fate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis presents methods for locating and analyzing cis-regulatory DNA elements involved with the regulation of gene expression in multicellular organisms. The regulation of gene expression is carried out by the combined effort of several transcription factor proteins collectively binding the DNA on the cis-regulatory elements. Only sparse knowledge of the 'genetic code' of these elements exists today. An automatic tool for discovery of putative cis-regulatory elements could help their experimental analysis, which would result in a more detailed view of the cis-regulatory element structure and function. We have developed a computational model for the evolutionary conservation of cis-regulatory elements. The elements are modeled as evolutionarily conserved clusters of sequence-specific transcription factor binding sites. We give an efficient dynamic programming algorithm that locates the putative cis-regulatory elements and scores them according to the conservation model. A notable proportion of the high-scoring DNA sequences show transcriptional enhancer activity in transgenic mouse embryos. The conservation model includes four parameters whose optimal values are estimated with simulated annealing. With good parameter values the model discriminates well between the DNA sequences with evolutionarily conserved cis-regulatory elements and the DNA sequences that have evolved neutrally. In further inquiry, the set of highest scoring putative cis-regulatory elements were found to be sensitive to small variations in the parameter values. The statistical significance of the putative cis-regulatory elements is estimated with the Two Component Extreme Value Distribution. The p-values grade the conservation of the cis-regulatory elements above the neutral expectation. The parameter values for the distribution are estimated by simulating the neutral DNA evolution. The conservation of the transcription factor binding sites can be used in the upstream analysis of regulatory interactions. This approach may provide mechanistic insight to the transcription level data from, e.g., microarray experiments. Here we give a method to predict shared transcriptional regulators for a set of co-expressed genes. The EEL (Enhancer Element Locator) software implements the method for locating putative cis-regulatory elements. The software facilitates both interactive use and distributed batch processing. We have used it to analyze the non-coding regions around all human genes with respect to the orthologous regions in various other species including mouse. The data from these genome-wide analyzes is stored in a relational database which is used in the publicly available web services for upstream analysis and visualization of the putative cis-regulatory elements in the human genome.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last decade, huge breakthroughs in genetics - driven by new technology and different statistical approaches - have resulted in a plethora of new disease genes identified for both common and rare diseases. Massive parallel sequencing, commonly known as next-generation sequencing, is the latest advance in genetics, and has already facilitated the discovery of the molecular cause of many monogenic disorders. This article describes this new technology and reviews how this approach has been used successfully in patients with skeletal dysplasias. Moreover, this article illustrates how the study of rare diseases can inform understanding and therapeutic developments for common diseases such as osteoporosis. © International Osteoporosis Foundation and National Osteoporosis Foundation 2013.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: Mutations in IDH3B, an enzyme participating in the Krebs cycle, have recently been found to cause autosomal recessive retinitis pigmentosa (arRP). The MDH1 gene maps within the RP28 arRP linkage interval and encodes cytoplasmic malate dehydrogenase, an enzyme functionally related to IDH3B. As a proof of concept for candidate gene screening to be routinely performed by ultra high throughput sequencing (UHTs), we analyzed MDH1 in a patient from each of the two families described so far to show linkage between arRP and RP28. Methods: With genomic long-range PCR, we amplified all introns and exons of the MDH1 gene (23.4 kb). PCR products were then sequenced by short-read UHTs with no further processing. Computer-based mapping of the reads and mutation detection were performed by three independent software packages. Results: Despite the intrinsic complexity of human genome sequences, reads were easily mapped and analyzed, and all algorithms used provided the same results. The two patients were homozygous for all DNA variants identified in the region, which confirms previous linkage and homozygosity mapping results, but had different haplotypes, indicating genetic or allelic heterogeneity. None of the DNA changes detected could be associated with the disease. Conclusions: The MDH1 gene is not the cause of RP28-linked arRP. Our experimental strategy shows that long-range genomic PCR followed by UHTs provides an excellent system to perform a thorough screening of candidate genes for hereditary retinal degeneration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: Mutations in IDH3B, an enzyme participating in the Krebs cycle, have recently been found to cause autosomal recessive retinitis pigmentosa (arRP). The MDH1 gene maps within the RP28 arRP linkage interval and encodes cytoplasmic malate dehydrogenase, an enzyme functionally related to IDH3B. As a proof of concept for candidate gene screening to be routinely performed by ultra high throughput sequencing (UHTs), we analyzed MDH1 in a patient from each of the two families described so far to show linkage between arRP and RP28. Methods: With genomic long-range PCR, we amplified all introns and exons of the MDH1 gene (23.4 kb). PCR products were then sequenced by short-read UHTs with no further processing. Computer-based mapping of the reads and mutation detection were performed by three independent software packages. Results: Despite the intrinsic complexity of human genome sequences, reads were easily mapped and analyzed, and all algorithms used provided the same results. The two patients were homozygous for all DNA variants identified in the region, which confirms previous linkage and homozygosity mapping results, but had different haplotypes, indicating genetic or allelic heterogeneity. None of the DNA changes detected could be associated with the disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A repetitive sequence collection is one where portions of a base sequence of length n are repeated many times with small variations, forming a collection of total length N. Examples of such collections are version control data and genome sequences of individuals, where the differences can be expressed by lists of basic edit operations. Flexible and efficient data analysis on a such typically huge collection is plausible using suffix trees. However, suffix tree occupies O(N log N) bits, which very soon inhibits in-memory analyses. Recent advances in full-text self-indexing reduce the space of suffix tree to O(N log σ) bits, where σ is the alphabet size. In practice, the space reduction is more than 10-fold, for example on suffix tree of Human Genome. However, this reduction factor remains constant when more sequences are added to the collection. We develop a new family of self-indexes suited for the repetitive sequence collection setting. Their expected space requirement depends only on the length n of the base sequence and the number s of variations in its repeated copies. That is, the space reduction factor is no longer constant, but depends on N / n. We believe the structures developed in this work will provide a fundamental basis for storage and retrieval of individual genomes as they become available due to rapid progress in the sequencing technologies.