800 resultados para Human body size.
Resumo:
The cytosolic phosphorylation ratio ([ATP]/[ADP][P(i)]) in the mammalian heart was found to be inversely related to body mass with an exponent of -0.30 (r = 0.999). This exponent is similar to -0.25 calculated for the mass-specific O2 consumption. The inverse of cytosolic free [ADP], the Gibbs energy of ATP hydrolysis (delta G'ATP), and the efficiency of ATP production (energy captured in forming 3 mol of ATP per cycle along the mitochondrial respiratory chain from NADH to 1/2 O2) were all found to scale with body mass with a negative exponent. On the basis of scaling of the phosphorylation ratio and free cytosolic [ADP], we propose that the myocardium and other tissues of small mammals represent a metabolic system with a higher driving potential (a higher delta G'ATP from the higher [ATP]/[ADP][P(i)]) and a higher kinetic gain [(delta V/Vmax)/delta [ADP]] where small changes in free [ADP] produce large changes in steady-state rates of O2 consumption. From the inverse relationship between mitochondrial efficiency and body size we calculate that tissues of small mammals are more efficient than those of large mammals in converting energy from the oxidation of foodstuffs to the bond energy of ATP. A higher efficiency also indicates that mitochondrial electron transport is not the major site for higher heat production in small mammals. We further propose that the lower limit of about 2 g for adult endotherm body size (bumblebee-bat, Estrucan shrew, and hummingbird) may be set by the thermodynamics of the electron transport chain. The upper limit for body size (100,000-kg adult blue whale) may relate to a minimum delta G'ATP of approximately 55 kJ/mol for a cytoplasmic phosphorylation ratio of 12,000 M-1.
Resumo:
n.s. no.51(2005)
Resumo:
Nongenetic inheritance mechanisms such as transgenerational plasticity (TGP) can buffer populations against rapid environmental change such as ocean warming. Yet, little is known about how long these effects persist and whether they are cumulative over generations. Here, we tested for adaptive TGP in response to simulated ocean warming across parental and grandparental generations of marine sticklebacks. Grandparents were acclimated for two months during reproductive conditioning, whereas parents experienced developmental acclimation, allowing us to compare the fitness consequences of short-term vs. prolonged exposure to elevated temperature across multiple generations. We found that reproductive output of F1 adults was primarily determined by maternal developmental temperature, but carry-over effects from grandparental acclimation environments resulted in cumulative negative effects of elevated temperature on hatching success. In very early stages of growth, F2 offspring reached larger sizes in their respective paternal and grandparental environment down the paternal line, suggesting that other factors than just the paternal genome may be transferred between generations. In later growth stages, maternal and maternal granddam environments strongly influenced offspring body size, but in opposing directions, indicating that the mechanism(s) underlying the transfer of environmental information may have differed between acute and developmental acclimation experienced by the two generations. Taken together, our results suggest that the fitness consequences of parental and grandparental TGP are highly context dependent, but will play an important role in mediating some of the impacts of rapid climate change in this system.
Resumo:
Errata and advertisement for "New England Depot. D.L. Hale" at end of v. 2.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Re-engraved by Michael van der Gucht and others after the original edition published at Rome in 1691.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
ESTCT,
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.