948 resultados para Host-parasite interaction
Resumo:
Henneguya lesteri n. sp, (Myxosporea) is described from sand whiting, Sillago analis, from the southern Queensland coast of Australia. H. lesteri displays a preference for the pseudobranchs and is typically positioned along the afferent blood vessels, displacing the adjoining lamellae and disrupting their normal array, The plasmodia appeared as whitish-hyaline, elliptical cysts (mean dimensions 230 x 410 mum) attached to the oral mucosa lining of the hyoid arch on the inner surface of the operculum. Infections of the gills were also found, in which the plasmodia were spherical, averaged 240 x 240 mum in size and were located on the inner hemibranch margin. The parasites lodged in the gill filament crypts and generated a mild hyperplastic response of the branchial epithelium, In histological sections, the plasmodium wall and adjoining ectoplasm appeared as a finely granulated, weakly eosinophilic layer, Ultrastructurally, this section of the host-parasite interface contained an intricate complex of pinocytotic channels. H. lesteri is polysporic, disporoblastic and pansporoblast forming. Sporogenesis is asynchronous, with the earliest developmental stages aligned predominantly along the plasmodium periphery, and maturing sporoblasts and spores toward the center. Ultrastructural details of sporoblast and spore development are in agreement with previously described myxosporeans. The mature spore is drop-shaped, length (mean) 9.1 mum, width 4.7 mum, thickness 2.5 mum, and comprises 2 polar capsules positioned closely together, a binucleated sporoplasm and a caudal process of 12.6 mum. The polar capsules are elongated, 3.2 x 1.6 mum, with 4 turns of the polar filament. Mean length of the everted filament is 23.2 mum, Few studies have analyzed the 18S gene-of marine Myxosporea. In fact, H. lesteri is the first marine species of Henneguya to be characterized at the molecular level: we determined 1966 bp of the small-subunit (18S) rDNA, The results indicated that differences between this and the hitherto studied freshwater Henneguya species are greater than differences among the freshwater Henneguya species.
Resumo:
Hookworms routinely reach the gut of nonpermissive hosts but fail to successfully feed, develop, and reproduce. To investigate the effects of host-parasite coevolution on the ability of hookworms to feed in nonpermissive hosts, we cloned and expressed aspartic proteases from canine and human hookworms. We show here that a cathepsin D-like protease from the canine hookworm Ancylosotoma caninum (Ac-APR-1) and the orthologous protease from the human hookworm Necator americanus (Na-APR-1) are expressed in the gut and probably exert their proteolytic activity extracellularly. Both proteases were detected immunologically and enzymatically in somatic extracts of adult worms. The two proteases were expressed in baculovirus, and both cleaved human and dog hemoglobin (Hb) in vitro. Each protease digested Hb from its permissive host between twofold (whole molecule) and sixfold (synthetic peptides) more efficiently than Hb from the nonpermissive host, despite the two proteases' having identical residues lining their active site clefts. Furthermore, both proteases cleaved Hb at numerous distinct sites and showed different substrate preferences. The findings suggest that the paradigm of matching the molecular structure of the food source within a host to the molecular structure of the catabolic proteases of the parasite is an important contributing factor for host-parasite compatibility and host species range.
Resumo:
The development of resistance in three stages throughout an active infection (pre-ovular, acute and initial chronic stages) was studied, comparing the total number of adult worms recovered from the reinfected group and the control groups. It was shown that Nectomys squamipes was unable to develop resistance in the tested conditions and, on the other hand, reinfection in the pre-ovular period of the parasite led the rodent to present the phenomenonacilitation, with reduction of natural resistance and an increase in the parasite load. These results suggest the existence of other forms of immunity diverse from the concomitant immunity in the host-parasite relationship, according to the employed model.
Resumo:
Interaction between Paracoccidioides brasiliensis (Pb) and inflammatory cells in hamster testis was studied sequentially by transmission electron microscopy. In early lesions (six hours after inoculation), polymorphonuclear neutrophils (PMNs) were the major and mononuclear cells and eosinophils were the minor constituents of the inflammatory cells. PMNs were later replaced by mononuclear cells. Viable Pb cells were phagocytosed or surrounded by inflammatory cells. Preserved Pb cells usually had broad host-parasite interphases, whereas dying ones had narrow interphases. The outer layer of the fungus wall was sometimes broken by PMN in some focal points, broken pieces being peeled off and phagocytosed. Small Pb cells were uninuclear, and were often related to broad interphase. Large Pb cells were multinucleated with irregularly shaped wall, and sometimes had lomasome and/or myelin like structures. Different interaction patterns of Pb with inflammatory cells may be due to functionally different host cell flow to the inoculation site or due to the age of Pb cells or both.
Resumo:
Iron plays a central role in host-parasite interactions, since both intervenients need iron for survival and growth, but are sensitive to iron-mediated toxicity. The host’s iron overload is often associated with susceptibility to infection. However, it has been previously reported that iron overload prevented the growth of Leishmania major, an agent of cutaneous leishmaniasis, in BALB/c mice. In order to further clarify the impact of iron modulation on the growth of Leishmania in vivo, we studied the effects of iron supplementation or deprivation on the growth of L. infantum, the causative agent of Mediterranean visceral leishmaniasis, in the mouse model. We found that dietary iron deficiency did not affect the protozoan growth, whereas iron overload decreased its replication in the liver and spleen of a susceptible mouse strain. The fact that the iron-induced inhibitory effect could not be seen in mice deficient in NADPH dependent oxidase or nitric oxide synthase 2 suggests that iron eliminates L. infantum in vivo through the interaction with reactive oxygen and nitrogen species. Iron overload did not significantly alter the mouse adaptive immune response against L. infantum. Furthermore, the inhibitory action of iron towards L. infantum was also observed, in a dose dependent manner, in axenic cultures of promastigotes and amastigotes. Importantly, high iron concentrations were needed to achieve such effects. In conclusion, externally added iron synergizes with the host’s oxidative mechanisms of defense in eliminating L. infantum from mouse tissues. Additionally, the direct toxicity of iron against Leishmania suggests a potential use of this metal as a therapeutic tool or the further exploration of iron anti-parasitic mechanisms for the design of new drugs.
Resumo:
Species introductions have altered host and parasite diversity throughout the world. In the case of introduced hosts, population age appears to be a good predictor of parasite richness. Habitat alteration is another variable that may impact host-parasite interactions by affecting the availability of intermediate hosts. The house sparrow (Passer domesticus (Linnaeus, 1758)) is a good model to test these predictions. It was introduced in several parts of the world and can be found across rural-urban gradients. A total of 160 house sparrows from Porto Alegre, state of Rio Grande do Sul, Brazil, were necropsied. Thirty house sparrows (19 %) were parasitized with at least one out of five helminth species (Digenea: Tamerlania inopina Freitas, 1951 and Eumegacetes sp.; Eucestoda: Choanotaenia passerina (Fuhrmann, 1907) Fuhrmann, 1932; Nematoda: Dispharynx nasuta (Rudolphi, 1819) Stiles & Hassall, 1920 and Cardiofilaria pavlovskyi Strom, 1937). Overall, there was no difference in prevalence and intensity of infection of any parasite species, parasite richness and community diversity between adult males and females and adults and juveniles. The number of infected sparrows among seasons, the richness of helminths and the abundance of species were also similar between rural and urban landscapes. Only the prevalence of C. passerina varied seasonally (p=0.0007). A decrease in the number of parasite species from the original range of P. domesticus (13) to its port of entrance in Brazil, the city of Rio de Janeiro (nine), to Porto Alegre (five) is compatible with the hypothesis that host population age is a good predictor of parasite richness.
Resumo:
Macrophages and muscle cells are the main targets for invasion of Trypanosoma cruzi. Ultrastructural studies of this phenomenon in vitro showed that invasion occurs by endocytosis, with attachment and internalization being mediated by different components capable of recognizing epi-or trypomastigotes (TRY). A parasitophorus vacuole was formed in both cell types, thereafter fusing with lysosomes. Then, the mechanism of T. cruzi invasion of host cells (HC) is essentially similar (during a primary infection in the abscence of a specific immune response), regardless of wether the target cell is a professional or a non-professional phagocytic cell. Using sugars, lectins, glycosidases, proteinases and proteinase inhibitors, we observed that the relative balance between exposed sialic acid and galactose/N-acetyl galactosamine (GAL) residues on the TRY surface, determines the parasite's capacity to invade HC, and that lectin-mediated phagocytosis with GAL specificity is important for internalization of T. cruzi into macrophages. On the other hand, GAL on the surface to heart muscle cells participate on TRY adhesion. TRY need to process proteolytically both the HC and their own surface, to expose the necessary ligands and receptors that allow binding to, and internalization in the host cell. The diverse range of molecular mechanisms which the parasite could use to invade the host cell may correspond to differences in the available "receptors"on the surface of each specific cell type. Acute phase components, with lectin or proteinase inhibitory activities (a-macroglobulins), may also be involved in T. cruzi-host cell interaction.
Resumo:
The interface Eurytrema coelomaticum/Bradybaena similaris was studied by quantifying the amount of glucose on the hemolymph and the content of glycogen in the cells of the digestive gland and the cephalopedal mass of infected and uninfected snails. Samples were analyzed on days 0, 30, 90 and 150 post-infection. The infected snails had less glucose in the hemolymph, with a reduction of 67.05 por cento at 30 days, and 62.09 por cento at 90 days post-infection. The reduction in glycogen content was 86.41 por cento in the digestive gland and 79.1 por cento in the cephalopedal mass at 30 days, and 92.71 por cento and 90.89 por cento in these organs respectively at 90 days post-infection. It is proposed that the sporocysts absorb glucose directly from the hemolymph.
Resumo:
The effect of exposing the lymnaeid snail Fossaria cubensis to the trematode Fasciola hepatica on the snail population's life-history traits was studied under laboratory conditions. Exposed individuals showed a lower survival rate than control snails, although from week 7 onward a slower decrease of this parameter in relation to the control group was observed. There were higher values of fecundity rate for the controls compared to the exposed group except during weeks 9, 10, 11 and 12, which was the time that followed the period when almost all of the infected snails died. Both the intrinsic and finite rates of natural increase were significantly higher for the control group, but exposed snails still attained a lower mean generation time. Age-specific trade-offs were found, mainly for the weekly increase in size versus the number of eggs per mass, the weekly increase in size versus the number of viable eggs per mass, the number of masses versus the hatching probability and the number of eggs versus the hatching probability. All these negative associations were significant for juveniles of both control and exposed snails and not for adults; however, exposed young individuals exhibited much higher values of the correlation coefficient than control animals.
Resumo:
The analyses of the ectoparasite species associated with a small mammal community on Ilha Grande, a coastal island in southern of the state of Rio de Janeiro, Brazil, evaluated the level of host-ectoparasite specificity. Was used the Jaccard index for qualitative data to analyse the similarity. The lowest value of similarity occurred between Proechimys iheringi and Marmosops incanus and between Sciurus aestuans and Nectomys squamipes (Cj = 0.08) and the highest between P. iheringi and Oxymycterus sp. (Cj = 0.33). This index showed a low value of similarity across the ectoparasite community. The only exception from this pattern of high host specificity occurred with P. iheringi and Oxymycterus sp., which shared five species of ectoparasites. The similarity values, for most of the cases, is smaller than 0.2.
Resumo:
Blood samples from 159 birds of the New-world family Tyrannidae (the flycatchers) from the eastern plains of Colombia, were examined for haematozoa parasites, in 1999-2000. Haematozoa were detected in six of 20 species. The overall prevalence was 10.1%. The most common parasites detected were microfilariae, followed by Trypanosoma and Plasmodium. The highest prevalence (9.6%) was found in the Ochre-bellied Flycatcher (Mionectes oleaginea). Mixed infections with more than one genus of blood parasite were rare and most infections encountered were of low intensity. The results of this study suggest an important role of ecologically diverse conditions determining composition, transmission, and prevalence of a blood parasite fauna, presumably through host interaction population density. Some new host parasite relationship records are presented.
Resumo:
BACKGROUND:Maternally transmitted symbionts have evolved a variety of ways to promote their spread through host populations. One strategy is to hamper the reproduction of uninfected females by a mechanism called cytoplasmic incompatibility (CI). CI occurs in crosses between infected males and uninfected females and leads to partial to near-complete infertility. CI-infections are under positive frequency-dependent selection and require genetic drift to overcome the range of low frequencies where they are counter-selected. Given the importance of drift, population sub-division would be expected to facilitate the spread of CI. Nevertheless, a previous model concluded that variance in infection between competing groups of breeding individuals impedes the spread of CI.RESULTS:In this paper we derive a model on the spread of CI-infections in populations composed of demes linked by restricted migration. Our model shows that population sub-division facilitates the invasion of CI. While host philopatry (low migration) favours the spread of infection, deme size has a non-monotonous effect, with CI-invasion being most likely at intermediate deme size. Individual-based simulations confirm these predictions and show that high levels of local drift speed up invasion but prevent high levels of prevalence across the entire population. Additional simulations with sex-specific migration rates further show that low migration rates of both sexes are required to facilitate the spread of CI.CONCLUSION:Our analyses show that population structure facilitates the invasion of CI-infections. Since some level of sub-division is likely to occur in most natural populations, our results help to explain the high incidence of CI-infections across species of arthropods. Furthermore, our work has important implications for the use of CI-systems in order to genetically modify natural populations of disease vectors.
Resumo:
Although the predilection for Toxoplasma gondii to form cysts in the nervous system and skeletal and heart muscles has been described for more than fifty years, skeletal muscle cells (SkMCs) have not been explored as a host cell type to study the Toxoplasma-host cell interaction and investigate the intracellular development of the parasite. Morphological aspects of the initial events in the Toxoplasma-SkMC interaction were analysed and suggest that there are different processes of protozoan adhesion and invasion and of the subsequent fate of the parasite inside the parasitophorous vacuole (PV). Using scanning electron microscopy,Toxoplasma tachyzoites from the mouse-virulent RH strain were found to be attached to SkMCs by the anterior or posterior region of the body, with or without expansion of the SkMC membrane. This suggests that different types of parasite internalization occurred. Asynchronous multiplication and differentiation of T. gondii were observed. Importantly, intracellular parasites were seen to display high amounts of amylopectin granules in their cytoplasm, indicating that tachyzoites of the RH strain were able to differentiate spontaneously into bradyzoites in SkMCs. This stage conversion occurred in approximately 3% of the PVs. This is particularly intriguing as tachyzoites of virulent Toxoplasma strains are not thought to be prone to cyst formation. We discuss whether biological differences in host cells are crucial to Toxoplasma stage conversion and suggest that important questions concerning the host cell type and its relevance in Toxoplasma differentiation are still unanswered.
Resumo:
Paracoccidioides brasiliensis causes infection through inhalation by the host of airborne propagules from the mycelium phase of the fungus. This fungus reaches the lungs, differentiates into the yeast form and is then disseminated to virtually all parts of the body. Here we review the identification of differentially-expressed genes in host-interaction conditions. These genes were identified by analyzing expressed sequence tags (ESTs) from P. brasiliensis cDNA libraries. The P. brasiliensis was recovered from infected mouse liver as well as from fungal yeast cells incubated in human blood and plasma, mimicking fungal dissemination to organs and tissues and sites of infection with inflammation, respectively. In addition, ESTs from a cDNA library of P. brasiliensis mycelium undergoing the transition to yeast were previously analyzed. Together, these studies reveal significant changes in the expression of a number of genes of potential importance in the host-fungus interaction. In addition, the unique and divergent representation of transcripts when the cDNA libraries are compared suggests differential gene expression in response to specific niches in the host. This analysis of gene expression patterns provides details about host-pathogen interactions and peculiarities of sites within the host.
Resumo:
Epidemiological studies of malaria or other vector-transmitted diseases often consider vectors as passive actors in the complex life cycle of the parasites, assuming that vector populations are homogeneous and vertebrate hosts are equally susceptible to being infected during their lifetime. However, some studies based on both human and rodent malaria systems found that mosquito vectors preferentially selected infected vertebrate hosts. This subject has been scarcely investigated in avian malaria models and even less in wild animals using natural host-parasite associations. We investigated whether the malaria infection status of wild great tits, Parus major, played a role in host selection by the mosquito vector Culex pipiens. Pairs of infected and uninfected birds were tested in a dual-choice olfactometer to assess their attractiveness to the mosquitoes. Plasmodium-infected birds attracted significantly fewer mosquitoes than the uninfected ones, which suggest that avian malaria parasites alter hosts' odours involved in vector orientation. Reaction time of the mosquitoes, that is, the time taken to select a host, and activation of mosquitoes, defined as the proportion of individuals flying towards one of the hosts, were not affected by the bird's infection status. The importance of these behavioural responses for the vector is discussed in light of recent advances in related or similar model systems.