819 resultados para Hospital Design and Construction
Resumo:
Mixture materials, mix design, and pavement construction are not isolated steps in the concrete paving process. Each affects the other in ways that determine overall pavement quality and long-term performance. However, equipment and procedures commonly used to test concrete materials and concrete pavements have not changed in decades, leaving gaps in our ability to understand and control the factors that determine concrete durability. The concrete paving community needs tests that will adequately characterize the materials, predict interactions, and monitor the properties of the concrete. The overall objectives of this study are (1) to evaluate conventional and new methods for testing concrete and concrete materials to prevent material and construction problems that could lead to premature concrete pavement distress and (2) to examine and refine a suite of tests that can accurately evaluate concrete pavement properties. The project included three phases. In Phase I, the research team contacted each of 16 participating states to gather information about concrete and concrete material tests. A preliminary suite of tests to ensure long-term pavement performance was developed. The tests were selected to provide useful and easy-to-interpret results that can be performed reasonably and routinely in terms of time, expertise, training, and cost. The tests examine concrete pavement properties in five focal areas critical to the long life and durability of concrete pavements: (1) workability, (2) strength development, (3) air system, (4) permeability, and (5) shrinkage. The tests were relevant at three stages in the concrete paving process: mix design, preconstruction verification, and construction quality control. In Phase II, the research team conducted field testing in each participating state to evaluate the preliminary suite of tests and demonstrate the testing technologies and procedures using local materials. A Mobile Concrete Research Lab was designed and equipped to facilitate the demonstrations. This report documents the results of the 16 state projects. Phase III refined and finalized lab and field tests based on state project test data. The results of the overall project are detailed herein. The final suite of tests is detailed in the accompanying testing guide.
Resumo:
The function of dowel bars is the transfer of a load across the transverse joint from one pavement slab to the adjoining slab. In the past, these transfer mechanisms have been made of steel. However, pavement damage such as loss of bonding, deterioration, hollowing, cracking and spalling start to occur when the dowels begin to corrode. A significant amount of research has been done to evaluate alternative types of materials for use in the reinforcement of concrete pavements. Initial findings have indicated that stainless steel and fiber composite materials possess properties, such as flexural strength and corrosion resistance, that are equivalent to the Department of Transportation specifications for standard steel, 1 1/2 inch diameter dowel bars. Several factors affect the load transfer of dowels; these include diameter, alignment, grouting, bonding, spacing, corrosion resistance, joint spacing, slab thickness and dowel embedment length. This research is directed at the analysis of load transfer based on material type and dowel spacing. Specifically, this research is directed at analyzing the load transfer characteristics of: (a) 8-inch verses 12-inch spacing, and (b) alternative dowel material compared to epoxy coated steel dowels, will also be analyzed. This report documents the installation of the test sections, placed in 1997. Dowel material type and location are identified. Construction observations and limitations with each dowel material are shown.
Resumo:
Two lanes of a major four lane arterial street needed to be reconstructed in Cedar Rapids, Iowa. The traffic volumes and difficulty of detouring the traffic necessitated closure for construction be held to an absolute minimum. Closure of the intersections, even for one day, was not politically feasible. Therefore, Fast Track and Fast Track II was specified for the project. Fast Track concrete paving has been used successfully in Iowa since 1986. The mainline portion of the project was specified to be Fast Track and achieved the opening strength of 400 psi in less than twelve hours. The intersections were allowed to be closed between 6 PM and 6 AM. This could occur twice - once to remove the old pavement and place the base and temporary surface and the second time to pave and cure the new concrete. The contractor was able to meet these restrictions. The Fast Track II used in the intersections achieved the opening strength of 350 psi in six to seven hours. Two test sections were selected in the mainline Fast Track and two intersections were chosen to test the Fast Tract II. Both flexural and compression specimens were tested. Pulse velocity tests were conducted on the pavement and test specimens. Maturity curves were developed through monitoring of the temperatures. Correlations were performed between the maturity and pulse velocity and the flexural strengths. The project was successful in establishing the feasibility of construction at night, with no disruption of traffic in the daytime, using fast Track II. Both the Fast Track II pavements were performing well four years after construction.
Resumo:
This paper is a literature review which describes the construction of state of the art of permanent magnet generators and motors constructing and discusses the current and possible application of these machines in industry. Permanent magnet machines are a well-know class of rotating and linear electric machines used for many years in industrial applications. A particular interest for permanent magnet generators is connected with wind mills, which seem to be becoming increasingly popular nowadays. Geared and direct-driven permanent magnet generators are described. A classification of direct-driven permanent magnet generators is given. Design aspects of permanent magnet generators are presented. Permanent magnet generators for wind turbines designs are highlighted. Dynamics and vibration problems of permanent magnet generators covered in literature are presented. The application of the Finite Element Method for mechanical problems solution in the field of permanent magnet generators is discussed.
Resumo:
Parameters such as tolerance, scale and agility utilized in data sampling for using in Precision Agriculture required an expressive number of researches and development of techniques and instruments for automation. It is highlighted the employment of methodologies in remote sensing used in coupled to a Geographic Information System (GIS), adapted or developed for agricultural use. Aiming this, the application of Agricultural Mobile Robots is a strong tendency, mainly in the European Union, the USA and Japan. In Brazil, researches are necessary for the development of robotics platforms, serving as a basis for semi-autonomous and autonomous navigation systems. The aim of this work is to describe the project of an experimental platform for data acquisition in field for the study of the spatial variability and development of agricultural robotics technologies to operate in agricultural environments. The proposal is based on a systematization of scientific work to choose the design parameters utilized for the construction of the model. The kinematic study of the mechanical structure was made by the virtual prototyping process, based on modeling and simulating of the tension applied in frame, using the.
Resumo:
The significance of services as business and human activities has increased dramatically throughout the world in the last three decades. Becoming a more and more competitive and efficient service provider while still being able to provide unique value opportunities for customers requires new knowledge and ideas. Part of this knowledge is created and utilized in daily activities in every service organization, but not all of it, and therefore an emerging phenomenon in the service context is information awareness. Terms like big data and Internet of things are not only modern buzz-words but they are also describing urgent requirements for a new type of competences and solutions. When the amount of information increases and the systems processing information become more efficient and intelligent, it is the human understanding and objectives that may get separated from the automated processes and technological innovations. This is an important challenge and the core driver for this dissertation: What kind of information is created, possessed and utilized in the service context, and even more importantly, what information exists but is not acknowledged or used? In this dissertation the focus is on the relationship between service design and service operations. Reframing this relationship refers to viewing the service system from the architectural perspective. The selected perspective allows analysing the relationship between design activities and operational activities as an information system while maintaining the tight connection to existing service research contributions and approaches. This type of an innovative approach is supported by research methodology that relies on design science theory. The methodological process supports the construction of a new design artifact based on existing theoretical knowledge, creation of new innovations and testing the design artifact components in real service contexts. The relationship between design and operations is analysed in the health care and social care service systems. The existing contributions in service research tend to abstract services and service systems as value creation, working or interactive systems. This dissertation adds an important information processing system perspective to the research. The main contribution focuses on the following argument: Only part of the service information system is automated and computerized, whereas a significant part of information processing is embedded in human activities, communication and ad-hoc reactions. The results indicate that the relationship between service design and service operations is more complex and dynamic than the existing scientific and managerial models tend to view it. Both activities create, utilize, mix and share information, making service information management a necessary but relatively unknown managerial task. On the architectural level, service system -specific elements seem to disappear, but access to more general information elements and processes can be found. While this dissertation focuses on conceptual-level design artifact construction, the results provide also very practical implications for service providers. Personal, visual and hidden activities of service, and more importantly all changes that take place in any service system have also an information dimension. Making this information dimension visual and prioritizing the processed information based on service dimensions is likely to provide new opportunities to increase activities and provide a new type of service potential for customers.
Resumo:
Large-headed total hip arthroplasty (THA) and hip resurfacing arthroplasty (HRA) with metal-on-metal (MoM) bearings became popular during the last decade. Recently, it has become evident that the large-head MoM hip implants are associated with increased revision rates despite their theoretical advantages. The purpose of this study was to evaluate the early results of primary MoM hip replacements and of acetabular revisions. I analyzed retrospectively the results of four MoM implant designs and the survival rate of acetabular revisions with impaction bone grafting, as documented in the Turku University Hospital database. Further, I evaluated the correlation between femoral head size and dislocation rate, and used the Finnish Arthroplasty Register data to compare the survival of three large-head MoM THAs to analogous HRAs. The early results for the Magnum M2A–ReCap THA were good. A larger head size decreased the risk of dislocation. Articular surface replacement (ASR) THA yielded inferior results compared to analogous HRA. For two other designs the results were similar. The R3–Synergy THA yielded inferior results compared to the reference implants. The survival of acetabular reconstructions with impaction bone grafting was inferior compared to previous reports. In conclusion, the early results of the Biomet ReCap–Magnum design were promising, and large head sizes decreased the dislocation rate. The survival of different MoM hip implant designs varied. The survival of new designs and techniques may be inferior to those reported by the clinics where implants are developed. An important caveat is that early promising results of new devices may rapidly worsen. New implants need to be introduced in a controlled fashion to the market; here, arthroplasty registers are a valuable tool that needs to be used.
Resumo:
A revolution\0\0\0 in earthmoving, a $100 billion industry, can be achieved with three components: the GPS location system, sensors and computers in bulldozers, and SITE CONTROLLER, a central computer system that maintains design data and directs operations. The first two components are widely available; I built SITE CONTROLLER to complete the triangle and describe it here. SITE CONTROLLER assists civil engineers in the design, estimation, and construction of earthworks, including hazardous waste site remediation. The core of SITE CONTROLLER is a site modelling system that represents existing and prospective terrain shapes, roads, hydrology, etc. Around this core are analysis, simulation, and vehicle control tools. Integrating these modules into one program enables civil engineers and contractors to use a single interface and database throughout the life of a project.
Resumo:
This paper presents the research and development of a 3-legged micro Parallel Kinematic Manipulator (PKM) for positioning in micro-machining and assembly operations. The structural characteristics associated with parallel manipulators are evaluated and the PKMs with translational and rotational movements are identified. Based on these identifications, a hybrid 3-UPU (Universal Joint-Prismatic Joint-Universal Joint) parallel manipulator is designed and fabricated. The principles of the operation and modeling of this micro PKM is largely similar to a normal size Stewart Platform (SP). A modular design methodology is introduced for the construction of this micro PKM. Calibration results of this hybrid 3-UPU PKM are discussed in this paper.
Resumo:
The quality of information provision influences considerably knowledge construction driven by individual users’ needs. In the design of information systems for e-learning, personal information requirements should be incorporated to determine a selection of suitable learning content, instructive sequencing for learning content, and effective presentation of learning content. This is considered as an important part of instructional design for a personalised information package. The current research reveals that there is a lack of means by which individual users’ information requirements can be effectively incorporated to support personal knowledge construction. This paper presents a method which enables an articulation of users’ requirements based on the rooted learning theories and requirements engineering paradigms. The user’s information requirements can be systematically encapsulated in a user profile (i.e. user requirements space), and further transformed onto instructional design specifications (i.e. information space). These two spaces allow the discovering of information requirements patterns for self-maintaining and self-adapting personalisation that enhance experience in the knowledge construction process.
Resumo:
Virtual reality has the potential to improve visualisation of building design and construction, but its implementation in the industry has yet to reach maturity. Present day translation of building data to virtual reality is often unidirectional and unsatisfactory. Three different approaches to the creation of models are identified and described in this paper. Consideration is given to the potential of both advances in computer-aided design and the emerging standards for data exchange to facilitate an integrated use of virtual reality. Commonalities and differences between computer-aided design and virtual reality packages are reviewed, and trials of current system, are described. The trials have been conducted to explore the technical issues related to the integrated use of CAD and virtual environments within the house building sector of the construction industry and to investigate the practical use of the new technology.
Resumo:
Based on an online image archive documenting the construction and history of an early computing company, the fictional story of "Co-Operative Explanatory Capabilities in Organizational Design and Personnel Management” follows the development of an experimental approach to worker productivity into a religious cult. The project investigates the place of creativity in efficiency management and the operation of bureaucratic systems in a post-industrial work environment. The project has spawned a series of collages, featured on the Economic Thought Projects 7" collaboration with Gelbart, The Eleventh Voyage, as well as the film of Co-Operative Explanatory Capabilities in Organizational Design and Personnel Management, which has also been published as a short story in Vertigo of the Modern and on Sacrifice Press.
Resumo:
The United Nation Intergovernmental Panel on Climate Change (IPCC) makes it clear that climate change is due to human activities and it recognises buildings as a distinct sector among the seven analysed in its 2007 Fourth Assessment Report. Global concerns have escalated regarding carbon emissions and sustainability in the built environment. The built environment is a human-made setting to accommodate human activities, including building and transport, which covers an interdisciplinary field addressing design, construction, operation and management. Specifically, Sustainable Buildings are expected to achieve high performance throughout the life-cycle of siting, design, construction, operation, maintenance and demolition, in the following areas: • energy and resource efficiency; • cost effectiveness; • minimisation of emissions that negatively impact global warming, indoor air quality and acid rain; • minimisation of waste discharges; and • maximisation of fulfilling the requirements of occupants’ health and wellbeing. Professionals in the built environment sector, for example, urban planners, architects, building scientists, engineers, facilities managers, performance assessors and policy makers, will play a significant role in delivering a sustainable built environment. Delivering a sustainable built environment needs an integrated approach and so it is essential for built environment professionals to have interdisciplinary knowledge in building design and management . Building and urban designers need to have a good understanding of the planning, design and management of the buildings in terms of low carbon and energy efficiency. There are a limited number of traditional engineers who know how to design environmental systems (services engineer) in great detail. Yet there is a very large market for technologists with multi-disciplinary skills who are able to identify the need for, envision and manage the deployment of a wide range of sustainable technologies, both passive (architectural) and active (engineering system),, and select the appropriate approach. Employers seek applicants with skills in analysis, decision-making/assessment, computer simulation and project implementation. An integrated approach is expected in practice, which encourages built environment professionals to think ‘out of the box’ and learn to analyse real problems using the most relevant approach, irrespective of discipline. The Design and Management of Sustainable Built Environment book aims to produce readers able to apply fundamental scientific research to solve real-world problems in the general area of sustainability in the built environment. The book contains twenty chapters covering climate change and sustainability, urban design and assessment (planning, travel systems, urban environment), urban management (drainage and waste), buildings (indoor environment, architectural design and renewable energy), simulation techniques (energy and airflow), management (end-user behaviour, facilities and information), assessment (materials and tools), procurement, and cases studies ( BRE Science Park). Chapters one and two present general global issues of climate change and sustainability in the built environment. Chapter one illustrates that applying the concepts of sustainability to the urban environment (buildings, infrastructure, transport) raises some key issues for tackling climate change, resource depletion and energy supply. Buildings, and the way we operate them, play a vital role in tackling global greenhouse gas emissions. Holistic thinking and an integrated approach in delivering a sustainable built environment is highlighted. Chapter two demonstrates the important role that buildings (their services and appliances) and building energy policies play in this area. Substantial investment is required to implement such policies, much of which will earn a good return. Chapters three and four discuss urban planning and transport. Chapter three stresses the importance of using modelling techniques at the early stage for strategic master-planning of a new development and a retrofit programme. A general framework for sustainable urban-scale master planning is introduced. This chapter also addressed the needs for the development of a more holistic and pragmatic view of how the built environment performs, , in order to produce tools to help design for a higher level of sustainability and, in particular, how people plan, design and use it. Chapter four discusses microcirculation, which is an emerging and challenging area which relates to changing travel behaviour in the quest for urban sustainability. The chapter outlines the main drivers for travel behaviour and choices, the workings of the transport system and its interaction with urban land use. It also covers the new approach to managing urban traffic to maximise economic, social and environmental benefits. Chapters five and six present topics related to urban microclimates including thermal and acoustic issues. Chapter five discusses urban microclimates and urban heat island, as well as the interrelationship of urban design (urban forms and textures) with energy consumption and urban thermal comfort. It introduces models that can be used to analyse microclimates for a careful and considered approach for planning sustainable cities. Chapter six discusses urban acoustics, focusing on urban noise evaluation and mitigation. Various prediction and simulation methods for sound propagation in micro-scale urban areas, as well as techniques for large scale urban noise-mapping, are presented. Chapters seven and eight discuss urban drainage and waste management. The growing demand for housing and commercial developments in the 21st century, as well as the environmental pressure caused by climate change, has increased the focus on sustainable urban drainage systems (SUDS). Chapter seven discusses the SUDS concept which is an integrated approach to surface water management. It takes into consideration quality, quantity and amenity aspects to provide a more pleasant habitat for people as well as increasing the biodiversity value of the local environment. Chapter eight discusses the main issues in urban waste management. It points out that population increases, land use pressures, technical and socio-economic influences have become inextricably interwoven and how ensuring a safe means of dealing with humanity’s waste becomes more challenging. Sustainable building design needs to consider healthy indoor environments, minimising energy for heating, cooling and lighting, and maximising the utilisation of renewable energy. Chapter nine considers how people respond to the physical environment and how that is used in the design of indoor environments. It considers environmental components such as thermal, acoustic, visual, air quality and vibration and their interaction and integration. Chapter ten introduces the concept of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass, in order to minimise heating and cooling load as well as energy consumption for artificial lighting. Chapter eleven discusses the growing importance of integrating Renewable Energy Technologies (RETs) into buildings, the range of technologies currently available and what to consider during technology selection processes in order to minimise carbon emissions from burning fossil fuels. The chapter draws to a close by highlighting the issues concerning system design and the need for careful integration and management of RETs once installed; and for home owners and operators to understand the characteristics of the technology in their building. Computer simulation tools play a significant role in sustainable building design because, as the modern built environment design (building and systems) becomes more complex, it requires tools to assist in the design process. Chapter twelve gives an overview of the primary benefits and users of simulation programs, the role of simulation in the construction process and examines the validity and interpretation of simulation results. Chapter thirteen particularly focuses on the Computational Fluid Dynamics (CFD) simulation method used for optimisation and performance assessment of technologies and solutions for sustainable building design and its application through a series of cases studies. People and building performance are intimately linked. A better understanding of occupants’ interaction with the indoor environment is essential to building energy and facilities management. Chapter fourteen focuses on the issue of occupant behaviour; principally, its impact, and the influence of building performance on them. Chapter fifteen explores the discipline of facilities management and the contribution that this emerging profession makes to securing sustainable building performance. The chapter highlights a much greater diversity of opportunities in sustainable building design that extends well into the operational life. Chapter sixteen reviews the concepts of modelling information flows and the use of Building Information Modelling (BIM), describing these techniques and how these aspects of information management can help drive sustainability. An explanation is offered concerning why information management is the key to ‘life-cycle’ thinking in sustainable building and construction. Measurement of building performance and sustainability is a key issue in delivering a sustainable built environment. Chapter seventeen identifies the means by which construction materials can be evaluated with respect to their sustainability. It identifies the key issues that impact the sustainability of construction materials and the methodologies commonly used to assess them. Chapter eighteen focuses on the topics of green building assessment, green building materials, sustainable construction and operation. Commonly-used assessment tools such as BRE Environmental Assessment Method (BREEAM), Leadership in Energy and Environmental Design ( LEED) and others are introduced. Chapter nineteen discusses sustainable procurement which is one of the areas to have naturally emerged from the overall sustainable development agenda. It aims to ensure that current use of resources does not compromise the ability of future generations to meet their own needs. Chapter twenty is a best-practice exemplar - the BRE Innovation Park which features a number of demonstration buildings that have been built to the UK Government’s Code for Sustainable Homes. It showcases the very latest innovative methods of construction, and cutting edge technology for sustainable buildings. In summary, Design and Management of Sustainable Built Environment book is the result of co-operation and dedication of individual chapter authors. We hope readers benefit from gaining a broad interdisciplinary knowledge of design and management in the built environment in the context of sustainability. We believe that the knowledge and insights of our academics and professional colleagues from different institutions and disciplines illuminate a way of delivering sustainable built environment through holistic integrated design and management approaches. Last, but not least, I would like to take this opportunity to thank all the chapter authors for their contribution. I would like to thank David Lim for his assistance in the editorial work and proofreading.
Resumo:
The effects and influence of the Building Research Establishment’s Environmental Assessment Methods (BREEAM) on construction professionals are examined. Most discussions of building assessment methods focus on either the formal tool or the finished product. In contrast, BREEAM is analysed here as a social technology using Michel Foucault’s theory of governmentality. Interview data are used to explore the effect of BREEAM on visibilities, knowledge, techniques and professional identities. The analysis highlights a number of features of the BREEAM assessment process which generally go unremarked: professional and public understandings of the method, the deployment of different types of knowledge and their implication for the authority and legitimacy of the tool, and the effect of BREEAM on standard practice. The analysis finds that BREEAM’s primary effect is through its impact on standard practices. Other effects include the use of assessment methods to defend design decisions, its role in both operationalizing and obscuring the concept of green buildings, and the effect of tensions between project and method requirements for the authority of the tool. A reflection on assessment methods as neo-liberal tools and their adequacy for the promotion of sustainable construction suggests several limitations of lock-in that hinder variation and wider systemic change.
Resumo:
How does the work of designers impact on the safety of operatives at the construction site? Safety research and policy emphasize the importance of designing for safe construction, yet the interface between design and construction is poorly understood: accidents have multiple causes making it hard to establish causal links between design choices and safety outcomes. An in-depth case study of a major station project examines how professionals on the construction site perceive and manage the safety challenges of a building design. Analyses reveal understandings that, on the project studied, design has an impact on safety because of: (1) the timing of design work, where the volume of late design changes increased the difficulty of planning safe procedures, e.g. for working at height, lifting heavy items, refurbishing and demolishing old buildings; and (2) inputs from design stakeholders with insufficient practical knowledge of construction and operation required unplanned work-arounds, e.g. to coordinate different sub-systems, provide maintenance access, and manage loads during construction. These findings suggest that safety suffers where projects are under-designed, and that alongside regulation, there is a need for robust management attention to the contractual structures, incentives, processes and tools that enable clients and designers to understand material practices of construction and operation.