941 resultados para Holder-type discrete functions
Resumo:
Crop type classification using remote sensing data plays a vital role in planning cultivation activities and for optimal usage of the available fertile land. Thus a reliable and precise classification of agricultural crops can help improve agricultural productivity. Hence in this paper a gene expression programming based fuzzy logic approach for multiclass crop classification using Multispectral satellite image is proposed. The purpose of this work is to utilize the optimization capabilities of GEP for tuning the fuzzy membership functions. The capabilities of GEP as a classifier is also studied. The proposed method is compared to Bayesian and Maximum likelihood classifier in terms of performance evaluation. From the results we can conclude that the proposed method is effective for classification.
Resumo:
A series expansion for Heckman-Opdam hypergeometric functions phi(lambda) is obtained for all lambda is an element of alpha(C)*. As a consequence, estimates for phi(lambda) away from the walls of a Weyl chamber are established. We also characterize the bounded hypergeometric functions and thus prove an analogue of the celebrated theorem of Helgason and Johnson on the bounded spherical functions on a Riemannian symmetric space of the noncompact type. The L-P-theory for the hypergeometric Fourier transform is developed for 0 < p < 2. In particular, an inversion formula is proved when 1 <= p < 2. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Nanosized fullerene solvates have attracted widespread research attention due to recent interesting discoveries. A particular type of solvate is limited to a fixed number of solvents and designing new solvates within the same family is a fundamental challenge. Here we demonstrate that the hexagonal closed packed (HCP) phase of C-60 solvates, formed with m-xylene, can also be stabilized using toluene. Contrary to the notion on their instability, these can be stabilized from minutes up to months by tuning the occupancy of solvent molecules. Due to high stability, we could record their absorption edge, and measure excitonic life-time, which has not been reported for any C-60 solvate. Despite being solid, absorbance spectrum of the solvates is similar in appearance to that of C-60 in solution. A new absorption band appears at 673 nm. The fluorescence lifetime at 760 nm is similar to 1.2 ns, suggesting an excited state unaffected by solvent-C-60 interaction. Finally, we utilized the unstable set of HCP solvates to exchange with a second solvent by a topotactic exchange mechanism, which rendered near permanent stability to the otherwise few minutes stable solvates. This is also the first example of topotactic exchange in supramolecular crystal, which is widely known in ionic solids. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Enzymes utilizing pyridoxal 5'-phosphate dependent mechanism for catalysis are observed in all cellular forms of living organisms. PLP-dependent enzymes catalyze a wide variety of reactions involving amino acid substrates and their analogs. Structurally, these ubiquitous enzymes have been classified into four major fold types. We have carried out investigations on the structure and function of fold type I enzymes serine hydroxymethyl transferase and acetylornithine amino transferase, fold type n enzymes catabolic threonine deaminase, D-serine deaminase, D-cysteine desulfhydrase and diaminopropionate ammonia lyase. This review summarizes the major findings of investigations on fold type II enzymes in the context of similar studies on other PLP-dependent enzymes. Fold type II enzymes participate in pathways of both degradation and synthesis of amino acids. Polypeptide folds of these enzymes, features of their active sites, nature of interactions between the cofactor and the polypeptide, oligomeric structure, catalytic activities with various ligands, origin of specificity and plausible regulation of activity are briefly described. Analysis of the available crystal structures of fold type II enzymes revealed five different classes. The dimeric interfaces found in these enzymes vary across the classes and probably have functional significance.
Resumo:
Pluripotent stem cells are being actively studied as a cell source for regenerating damaged liver. For long-term survival of engrafting cells in the body, not only do the cells have to execute liver-specific function but also withstand the physical strains and invading pathogens. The cellular innate immune system orchestrated by the interferon (IFN) pathway provides the first line of defense against pathogens. The objective of this study is to assess the innate immune function as well as to systematically profile the IFN-induced genes during hepatic differentiation of pluripotent stem cells. To address this objective, we derived endodermal cells (day 5 post-differentiation), hepatoblast (day 15) and hepatocyte-like cells (day 21) from human embryonic stem cells (hESCs). Day 5, 15 and 21 cells were stimulated with IFN-alpha and subjected to IFN pathway analysis. Transcriptome analysis was carried out by RNA sequencing. The results showed that the IFN-alpha treatment activated STAT-JAK pathway in differentiating cells. Transcriptome analysis indicated stage specific expression of classical and non-classical IFN-stimulated genes (ISGs). Subsequent validation confirmed the expression of novel ISGs including RASGRP3, CLMP and TRANK1 by differentiated hepatic cells upon IFN treatment. Hepatitis C virus replication in hESC-derived hepatic cells induced the expression of ISGs - LAMP3, ETV7, RASGRP3, and TRANK1. The hESC-derived hepatic cells contain intact innate system and can recognize invading pathogens. Besides assessing the tissue-specific functions for cell therapy applications, it may also be important to test the innate immune function of engrafting cells to ensure adequate defense against infections and improve graft survival. (C) 2015 The Authors. Published by Elsevier B.V.
Resumo:
In this paper, we study some degenerate parabolic equation with Cauchy-Dirichlet boundary conditions. This problem is considered in little Holder spaces. The optimal regularity of the solution v is obtained and is specified in terms of those of the second member when some conditions upon the Holder exponent with respect to the degeneracy are satisfied. The proofs mainly use the sum theory of linear operators with or without density of domains and the results of smoothness obtained in the study of some abstract linear differential equations of elliptic type.
Resumo:
The emergence of cooperation is analyzed in heterogeneous populations where individuals can be classified in two groups according to their phenotypic appearance. Phenotype recognition is assumed for all individuals: individuals are able to identify the type of every other individual, but fail to recognize their own type, and thus behave under partial information conditions. The interactions between individuals are described by 2 × 2 symmetric games where individuals can either cooperate or defect. The evolution of such populations is studied in the framework of evolutionary game by means of the replicator dynamics. Overlapping generations are considered, so the replicator equations are formulated in discrete-time form. The well-posedness conditions of the system are derived. Depending on the parameters of the game, a restriction may exist for the generation length. The stability analysis of the dynamical system is carried out and a detailed description of the behavior of trajectories starting from the interior of the state-space is given. We find that, provided the conditions of well-posedness are verified, the linear stability of monomorphic states in the discrete-time replicator coincides with the one of the continuous case. Specific from the discrete-time case, a relaxed restriction for the generation length is derived, for which larger time-steps can be used without compromising the well-posedness of the replicator system.
Resumo:
The aim of this paper is to investigate to what extent the known theory of subdifferentiability and generic differentiability of convex functions defined on open sets can be carried out in the context of convex functions defined on not necessarily open sets. Among the main results obtained I would like to mention a Kenderov type theorem (the subdifferential at a generic point is contained in a sphere), a generic Gâteaux differentiability result in Banach spaces of class S and a generic Fréchet differentiability result in Asplund spaces. At least two methods can be used to prove these results: first, a direct one, and second, a more general one, based on the theory of monotone operators. Since this last theory was previously developed essentially for monotone operators defined on open sets, it was necessary to extend it to the context of monotone operators defined on a larger class of sets, our "quasi open" sets. This is done in Chapter III. As a matter of fact, most of these results have an even more general nature and have roots in the theory of minimal usco maps, as shown in Chapter II.
Resumo:
This investigation is concerned with the notion of concentrated loads in classical elastostatics and related issues. Following a limit treatment of problems involving concentrated internal and surface loads, the orders of the ensuing displacements and stress singularities, as well as the stress resultants of the latter, are determined. These conclusions are taken as a basis for an alternative direct formulation of concentrated-load problems, the completeness of which is established through an appropriate uniqueness theorem. In addition, the present work supplies a reciprocal theorem and an integral representation-theorem applicable to singular problems of the type under consideration. Finally, in the course of the analysis presented here, the theory of Green's functions in elastostatics is extended.
Resumo:
The aim of this paper is to present fixed point result of mappings satisfying a generalized rational contractive condition in the setup of multiplicative metric spaces. As an application, we obtain a common fixed point of a pair of weakly compatible mappings. Some common fixed point results of pair of rational contractive types mappings involved in cocyclic representation of a nonempty subset of a multiplicative metric space are also obtained. Some examples are presented to support the results proved herein. Our results generalize and extend various results in the existing literature.
Resumo:
Research has begun on Microbial Carbonate Precipitation (MCP), which shows promise as a soil improvement method because of its low carbon dioxide emission compared to cement stabilized agents. MCP produces calcium carbonate from carbonates and calcium in soil voids through ureolysis by "Bacillus Pasteurii". This study focuses on how the amount of calcium carbonate precipitation is affected by the injection conditions of the microorganism and nutrient salt, such as the number of injections and the soil type. Experiments were conducted to simulate soil improvement by bio-grouting soil in a syringe. The results indicate that the amount of precipitation is affected by injection conditions and soil type, suggesting that, in order for soil improvement by MCP to be effective, it is necessary to set injection conditions that are in accordance with the soil conditions. © 2011 ASCE.
Resumo:
In addition to the three RNA polymerases (RNAP I-III) shared by all eukaryotic organisms, plant genomes encode a fourth RNAP (RNAP IV) that appears to be specialized in the production of siRNAs. Available data support a model in which dsRNAs are generated by RNAP IV and RNA-dependent RNAP 2 (RDR2) and processed by DICER (DCL) enzymes into 21- to 24-nt siRNAs, which are associated with different ARGONAUTE (AGO) proteins for transcriptional or posttranscriptional gene silencing. However, it is not yet clear what fraction of genomic siRNA production is RNAP IV-dependent, and to what extent these siRNAs are preferentially processed by certain DCL(s) or associated with specific AGOs for distinct downstream functions. To address these questions on a genome-wide scale, we sequenced approximately 335,000 siRNAs from wild-type and RNAP IV mutant Arabidopsis plants by using 454 technology. The results show that RNAP IV is required for the production of >90% of all siRNAs, which are faithfully produced from a discrete set of genomic loci. Comparisons of these siRNAs with those accumulated in rdr2 and dcl2 dcl3 dcl4 and those associated with AGO1 and AGO4 provide important information regarding the processing, channeling, and functions of plant siRNAs. We also describe a class of RNAP IV-independent siRNAs produced from endogenous single-stranded hairpin RNA precursors.
Resumo:
This paper is concerned with the role of information in the servitization of manufacturing which has led to “the innovation of an organisation’s capabilities and processes as equipment manufacturers seek to offer services around their products” (Neely 2009, Baines et al 2009). This evolution has resulted in an information requirement (IR) shift as companies move from discrete provision of equipment and spare parts to long-term service contracts guaranteeing prescribed performance levels. Organisations providing such services depend on a very high level of availability and quality of information throughout the service life-cycle (Menor et al 2002). This work focuses on whether, for a proposed contract based around complex equipment, the Information System is capable of providing information at an acceptable quality and requires the IRs to be examined in a formal manner. We apply a service information framework (Cuthbert et al 2008, McFarlane & Cuthbert 2012) to methodically assess IRs for different contract types to understand the information gap between them. Results from case examples indicate that this gap includes information required for the different contract types and a set of contract-specific IRs. Furthermore, the control, ownership and use of information differs across contract types as the boundary of operation and responsibility changes.
Resumo:
Midbrain dopaminergic neurons in the substantia nigra, pars compacta and ventral tegmental area are critically important in many physiological functions. These neurons exhibit firing patterns that include tonic slow pacemaking, irregular firing and bursting, and the amount of dopamine that is present in the synaptic cleft is much increased during bursting. The mechanisms responsible for the switch between these spiking patterns remain unclear. Using both in-vivo recordings combined with microiontophoretic or intraperitoneal drug applications and in-vitro experiments, we have found that M-type channels, which are present in midbrain dopaminergic cells, modulate the firing during bursting without affecting the background low-frequency pacemaker firing. Thus, a selective blocker of these channels, 10,10-bis(4-pyridinylmethyl)-9(10H)- anthracenone dihydrochloride, specifically potentiated burst firing. Computer modeling of the dopamine neuron confirmed the possibility of a differential influence of M-type channels on excitability during various firing patterns. Therefore, these channels may provide a novel target for the treatment of dopamine-related diseases, including Parkinson's disease and drug addiction. Moreover, our results demonstrate that the influence of M-type channels on the excitability of these slow pacemaker neurons is conditional upon their firing pattern. © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Resumo:
A small-strain two-dimensional discrete dislocation plasticity (DDP) framework is developed wherein dislocation motion is caused by climb-assisted glide. The climb motion of the dislocations is assumed to be governed by a drag-type relation similar to the glide-only motion of dislocations: such a relation is valid when vacancy kinetics is either diffusion limited or sink limited. The DDP framework is employed to predict the effect of dislocation climb on the uniaxial tensile and pure bending response of single crystals. Under uniaxial tensile loading conditions, the ability of dislocations to bypass obstacles by climb results in a reduced dislocation density over a wide range of specimen sizes in the climb-assisted glide case compared to when dislocation motion is only by glide. A consequence is that, at least in a single slip situation, size effects due to dislocation starvation are reduced. By contrast, under pure bending loading conditions, the dislocation density is unaffected by dislocation climb as geometrically necessary dislocations (GNDs) dominate. However, climb enables the dislocations to arrange themselves into lower energy configurations which significantly reduces the predicted bending size effect as well as the amount of reverse plasticity observed during unloading. The results indicate that the intrinsic plasticity material length scale associated with GNDs is strongly affected by thermally activated processes and will be a function of temperature. © 2013 IOP Publishing Ltd.