974 resultados para High-velocity


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Regular exercise, particularly progressive resistance training (PRT), is recognized as one of the most effective strategies to prevent age-related muscle loss (sarcopenia), but its effects on muscle function are mixed. However, emerging data indicates that high velocity PRT (fast concentric muscle contractions) is more effective for improving functional outcomes than traditional PRT. In terms of falls prevention, high-challenging balance training programs appear to be most effective. There is also compelling evidence that supplemental vitamin D is an effective therapeutic option for falls prevention. The findings from a recent meta-analysis revealed that supplemental vitamin D at a dose of at least 700–1,000 IU/d or an achieved serum 25(OH)D level of at least 60 nmol/L was associated with reduced falls risk among older individuals. Based on these findings, it is possible that the combination of exercise and vitamin D could have a synergistic effect on muscle morphology and function, particularly since both interventions have been shown to have beneficial effects on type II “fast twitch” muscle fibers and systemic inflammation, which have both been linked to losses in muscle mass and function. Unfortunately however, the findings from the limited number of factorial 2 × 2 design RCTs indicate that additional vitamin D does not enhance the effects of exercise on measures of muscle morphology, function or falls risk. However, none of these trials were adequately powered to detect a “synergistic” effect between the two treatment strategies, but it is likely that if an exercise-by-vitamin D interaction does exist, it may be limited to situations when vitamin D deficiency/insufficiency is corrected. Further targeted research in “high risk” groups is still needed to address this question, and evaluate whether there is a threshold level of serum 25(OH)D to maximize the effects of exercise on muscle and falls risk.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background : Osteoporosis affects over 220 million people worldwide, and currently there is no 'cure' for the disease. Thus, there is a need to develop evidence-based, safe and acceptable prevention strategies at the population level that target multiple risk factors for fragility fractures to reduce the health and economic burden of the condition.

Methods :
The 'Osteo-cise: Strong Bones for Life' study will investigate the effectiveness and feasibility of a multi-component targeted exercise, osteoporosis education/awareness and behavioural change program for improving bone health and muscle function, and reducing falls risk in community-dwelling older adults at an increased risk of fracture. Men and women aged 60 years or above will participate in an 18-month randomised controlled trial comprising a 12-month structured and supervised community-based program and a 6-month 'research to practise' translational phase. Participants will be randomly assigned to either the 'Osteo-cise' intervention or a self-management control group. The intervention will comprise a multi-modal exercise program incorporating high velocity progressive resistance training, moderate impact weight-bearing exercise and high challenging balance exercises performed three times weekly at local community-based fitness centres. A behavioural change program will be used to enhance exercise adoption and adherence to the program. Community-based osteoporosis education seminars will be conducted to improve participant knowledge and understanding of the risk factors and preventative measures for osteoporosis, falls and fractures. The primary outcomes measures, to be collected at baseline, 6, 12, and 18 months, will include DXA-derived hip and spine bone mineral density measurements and functional muscle power (timed stair-climb test). Secondary outcomes measures include: MRI-assessed distal femur and proximal tibia trabecular bone micro-architecture, lower limb and back maximal muscle strength, balance and function (four square step test, functional reach test, timed up-and-go test and 30-second sit-to-stand), falls incidence and health-related quality of life. Cost-effectiveness will also be assessed.

Discussion :
The findings from the Osteo-cise: Strong Bones for Life study will provide new information on the efficacy of a targeted multi-modal community-based exercise program incorporating high velocity resistance training, together with an osteoporosis education and behavioural change program for improving multiple risk factors for falls and fracture in older adults at risk of fragility fracture. Trial Registration: Australian New Zealand Clinical Trials Registry reference ACTRN12609000100291

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective The aim of the study was to examine the effects of a high-velocity, low-amplitude (HVLA) manipulation to the lumbosacral joint on corticospinal excitability, as measured by motor evoked potentials (MEPs) using transcranial magnetic stimulation, and spinal reflex excitability, as measured by the Hoffman reflex (H-reflex).

Methods In a randomized, controlled, crossover design, 14 asymptomatic volunteers (mean age, 23 ± 5.4 years; 10 men; 4 women) were measured for MEPs and H-reflexes immediately before and after a randomly allocated intervention. The interventions consisted of HVLA applied bilaterally to the lumbosacral joint and a control intervention. Participants returned a week later, and the same procedures were performed using the other intervention. Data for H-reflex and MEP amplitudes were normalized to the M-wave maximum amplitude and analyzed using 2-way analysis of variance with repeated measures.

Results A significant interaction of treatment by time was found for MEP (F1,13 = 4.87, P = .04), and post hoc analyses showed that the MEP/M-wave maximum ratio decreased significantly in the HVLA treatment (P = .02; effect size, 0.68). For H-reflex, there was a significant effect of time (F1,13 = 8.186, P = .01) and treatment and time interaction (F1,13 = 9.05, P = .01), with post hoc analyses showing that H-reflexes were significantly reduced after the HVLA manipulation (P = .004; effect size, 0.94). There were no significant changes in MEP latency or silent period duration.

Conclusion An HVLA manipulation applied to the lumbosacral joint produced a significant decrease in corticospinal and spinal reflex excitability, and no significant change occurred after the control intervention. The changes in H-reflexes were larger than those in MEPs, suggesting a greater degree of inhibition at the level of the spinal cord.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

 A macroscopic ductile fracture criterion is proposed based on micro-mechanism analysis of nucleation, growth and shear coalescence of voids from experimental observation of fracture surfaces. The proposed ductile fracture model endows a changeable cut-off value for the stress triaxiality to represent effect of micro-structures, the Lode parameter, temperature, and strain rate on ductility of metals. The proposed model is used to construct fracture loci of AA 2024- T351. The constructed fracture loci are compared with experimental data covering wide stress triaxiality ranging between –0.5 and 1.0. The comparison suggests that the proposed model can provide a satisfactory prediction of ductile fracture for metals from compressive upsetting tests to plane strain tension with slanted fracture surfaces. Moreover, it is expected that the proposed model reasonably describes ductile fracture behavior in high velocity perforation simulation since a reasonable cut-off value for the stress triaxiality is coupled with the proposed ductile fracture criterion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deposition of wear-resistant hard chromium plating leads to a decrease in the fatigue strength of the base material. Despite the effective protection against wear and corrosion, fatigue life and environmental requirements result in pressure to identify alternatives or to improve conventional chromium electroplating mechanical characteristics. An interesting, environmentally safer and cleaner alternative for the replacement of hard chronic plating is tungsten carbide thermal spray coating, applied by high velocity oxyfuel (HVOF) process.To improve the fatigue strength of aeronautical steel chromium electroplated, shot peening is a successfully used method. Multiple lacer systems of coatings are considered to have larger resistance to crack propagation in comparison with simple layer.The aim of this study was to analyze the effect of nickel underplate on the fatigue strength of hard chromium plated AISI 4340 steel in two mechanical conditions: HRc 39 and HRc 52.Rotating bending fatigue tests results indicate that the clectroless nickel plating underlayer is responsible for the increase in fatigue strength of AISI 4340 steel chromium electroplated. This behavior may be attributed to the largest toughness/ductility and compressive residual stresses which, probably, arrested or delayed the inicrocrack propagation from the hard chromium external layer. The compressive residual stress field (CRSF) induced by the electroplating process was determined by X-ray diffraction method. The evolution of fatigue strength compressive residual stress field CRSF and crack sources are discussed and analyzed by SEM. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Internal residual stresses significantly influence the fatigue strength of coated materials. It is well known that chromium plating is the most used electrodeposited coating for important industrial applications. However, pressure to identify alternatives or to improve the chromium electroplating process have increased in recent years, related to the reduction in fatigue strength of the base material and to environmental requirements. The high efficiency and fluoride free hard chromium electroplating there called accelerated) is an improvement to the conventional process. One environmentally safer and cleaner alternative to hard chromium plating is tungsten carbide thermal spray coating applied by the High Velocity Oxy-Fuel (HVOF) process. To increase the fatigue strength of chromium plated materials, coating thickness and microcracks density are important parameters to be controlled. Techniques as compressive residual stresses induced by shot peening and multilayers, are also used. The aim of this study was to analyse the effects on AISI 4340 steel, in the rotating bending fatigue behaviour, of the: tungsten carbide thermal spray coating applied by HP/HVOF process; chemical nickel underplate, and shot peening process applied before coating deposition, in comparison to hard chromium electroplatings. Rotating bending fatigue test results indicate better performance for the conventional hard chromium plating in relation to the accelerated hard chromium electroplating. Tungsten carbide thermal spray coating and accelerated hard chromium plate over nickel resulted in higher fatigue strength when compared to samples conventional or accelerated hard chromium plated. Shot peening showed to be an excellent alternative to increase fatigue strength of AISI 4340 steel hard chromium electroplated. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is known that chromium electroplating is related to the reduction in the fatigue strength of base metal. However, chromium results in protection against wear and corrosion combined with chemical resistance and good lubricity. Environmental requirements are an important point to be considered in the search for possible alternatives to hard chrome plating. Aircraft landing gear manufactures are considering WC thermal spray coating applied by the high-velocity oxygen-fuel (HVOF) process an alternative candidate, which shows performance at least comparable to results, obtained for hard chrome plating. The aim of this study is to compare the influence of WC-17Co and WC-10Co-4Cr coatings applied by HVOF process and hard chromium electroplating on the fatigue strength of AISI 4340 steel, with and without shot peening. S-N curves were obtained in axial fatigue test for base material, chromium plated and tungsten carbide coated specimens. Tungsten carbide thermal spray coating results in higher fatigue strength when compared to hard chromium electroplated. Shot peening prior to thermal spraying showed to be an excellent alternative to increase fatigue strength of AISI 4340 steel. Experimental data showed higher axial fatigue and corrosion resistance in salt fog exposure for samples WC-10Co-4Cr HVOF coated when compared with WC-17Co. Fracture surface analysis by scanning electron microscopy (SEM) indicated the existence of a uniform coverage of nearly all substrates. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Currently, high-strength materials, particularly AISI 4340 steel, are used in several landing gear components. Due to the high resistance to wear and corrosion required, the components are usually coating by hard chromium. This treatment produces waste, such as Cr+ 6 (hexavalent chromium), generally after applying the coating of hard chromium which is harmful to health and the environment. The process HVOF (High-velocity-oxygen-fuel) is considered a promising technique for deposition of hard chromium alternative coatings, for example, coatings based on tungsten carbide. This technique provides high hardness and good wear strength and more resistance to fatigue when compared to AISI 4340 hard chromium coated. To minimize loss fatigue due to the process of deposition, shot peening is used to obtain a compressive residual stress. The aim of this study was to analyze the effects of the tungsten carbide thermal spray coating applied by the HVOF, in comparison to the conventional hard chromium electroplating on the AISI 4340 high strength steel behavior in fatigue. Optical microscopy and scanning electron microscopy were used to observe crack origin sites, thickness and adhesion of the coating. (C) 2010 Published by Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study examined the influence of both optic flow characteristics and intention on postural control responses. Two groups of 10 adults each were exposed to the room's movement either at 0.6 cm/s (low velocity group) or 1.0 cm/s (high velocity group). All the participants stood in the upright stance inside of a moving room and were informed about the room movement only after the fourth trial as they were asked to resist to its influence. Results revealed that participants from both groups were influenced by the imposed visual stimulus in the first trials, but the coupling strength was weaker for the high velocity group. The request to resist the visual influences decreased visual influences oil body sway, but only for the low velocity group. These results indicate that intention might play a role in stimulus influences on body sway but it is stimulus dependent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate and solve in the context of general relativity the apparent paradox which appears when bodies floating in a background fluid are set in relativistic motion. Suppose some macroscopic body, say, a submarine designed to lie just in equilibrium when it rests (totally) immersed in a certain background fluid. The puzzle arises when different observers are asked to describe what is expected to happen when the submarine is given some high velocity parallel to the direction of the fluid surface. on the one hand, according to observers at rest with the fluid, the submarine would contract and, thus, sink as a consequence of the density increase. on the other hand, mariners at rest with the submarine using an analogous reasoning for the fluid elements would reach the opposite conclusion. The general relativistic extension of the Archimedes law for moving bodies shows that the submarine sinks. As an extra bonus, this problem suggests a new gedankenexperiment for the generalized second law of thermodynamics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Poincar, group generalizes the Galilei group for high-velocity kinematics. The de Sitter group is assumed to go one step further, generalizing Poincar, as the group governing high-energy kinematics. In other words, ordinary special relativity is here replaced by de Sitter relativity. In this theory, the cosmological constant I > is no longer a free parameter, and can be determined in terms of other quantities. When applied to the whole universe, it is able to predict the value of I > and to explain the cosmic coincidence. When applied to the propagation of ultra-high energy photons, it gives a good estimate of the time delay observed in extragalactic gamma-ray flares. It can, for this reason, be considered a new paradigm to approach the quantum gravity problem.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stainless steel coatings obtained by High Velocity Oxygen Fuel (HVOF) were characterized using optical (OM) and scanning electron microscopy (SEM), electron probe micro-analysis, X-ray diffraction (XRD), open-circuit potential (E-OC) measurements, electrochemical impedance spectroscopy (EIS) and polarisation tests. Differences among coated steels were mainly related with the gun-substrate distance parameter (310 nm for samples A and B and 260 min for C and D). The open-circuit potential values measured for all the samples after 18 h of immersion in aerated and unstirred 3.4% NaCl solution were: - 0.334, - 0.360, - 0.379 and - 0.412 V vs. Ag/AgCl,KClsat. for samples A to D, respectively. For EIS measurements, Nyquist plots showed higher capacitive semi-circle for samples sprayed at longer distance, indicating higher corrosion resistance in NaCl solution. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present study, different types of 75% Cr3C2-25% NiCr coatings were applied on a steel substrate by means of high velocity oxygen fuel spraying (HVOF), and studied using ac and dc electrochemical measurements in an aerated and unstirred 0.5 M H2SO4 solution. Structural characterization was determined before and after electrochemical tests. Differences between all sprayed systems are related to the gun transverse speed and number of deposited layers, which strongly affected the electrochemical characteristics of the coated steels. The coating obtained with a higher torch speed showed better resistance against corrosion. The electrochemical impedance results were analyzed using an equivalent circuit where porosity of the coatings and substrate oxidation were considered. (C) 2003 Elsevier Ltd. All rights reserved.