966 resultados para Hierarchical Spatial Classification
Resumo:
The pipe flow of a viscous-oil-gas-water mixture such as that involved in heavy oil production is a rather complex thereto-fluid dynamical problem. Considering the complexity of three-phase flow, it is of fundamental importance the introduction of a flow pattern classification tool to obtain useful information about the flow structure. Flow patterns are important because they indicate the degree of mixing during flow and the spatial distribution of phases. In particular, the pressure drop and temperature evolution along the pipe is highly dependent on the spatial configuration of the phases. In this work we investigate the three-phase water-assisted flow patterns, i.e. those configurations where water is injected in order to reduce friction caused by the viscous oil. Phase flow rates and pressure drop data from previous laboratory experiments in a horizontal pipe are used for flow pattern identification by means of the 'support vector machine' technique (SVM).
Resumo:
This paper describes the application of artificial neural nets as an alternative and efficient method for the classification of botanical taxa based on chemical data (chemosystematics). A total of 28,000 botanical occurrences of chemical compounds isolated from the Asteraceae family were chosen from the literature, and grouped by chemical class for each species. Four tests were carried out to differentiate and classify different botanical taxa. The qualifying capacity of the artificial neural nets was dichotomically tested at different hierarchical levels of the family, such as subfamilies and groups of Heliantheae subtribes. Furthermore, two specific subtribes of the Heliantheae and two genera of one of these subtribes were also tested. In general, the artificial neural net gave rise to good results, with multiple-correlation values R > 0.90. Hence, it was possible to differentiate the dichotomic character of the botanical taxa studied.
Resumo:
A simulation study was made of the effects of mixing two evolutionary forces (natural selection and random genetic drift), combined in a single data matrix of gene frequencies, on the resulting genetic distances among populations. Twenty-one, kinds of simulated gene frequencies surfaces, for 15 populations linearly distributed over geographic space, were used to construct 21 data matrices, combining different proportions of two types of surfaces (gradients and random surfaces). These matrices were analysed by Unweighted Pair-Group Method - Arithmetic Averages (UPGMA), clustering and Principal Coordinate Analysis. The results obtained show that ordination is more accurate than UPGMA in revealing the spatial patterns in the genetic distances, in comparison with results obtained using the Mantel test comparing directly genetic and geographic distances.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This article presents a quantitative and objective approach to cat ganglion cell characterization and classification. The combination of several biologically relevant features such as diameter, eccentricity, fractal dimension, influence histogram, influence area, convex hull area, and convex hull diameter are derived from geometrical transforms and then processed by three different clustering methods (Ward's hierarchical scheme, K-means and genetic algorithm), whose results are then combined by a voting strategy. These experiments indicate the superiority of some features and also suggest some possible biological implications.
Resumo:
The present work was conducted to determine the distribution of Loxopagurus loxochelis collected monthly, over a period of one year, in Ubatuba Bay (from September/95 to August/96). A total of 179 specimens were collected (138 males, 30 females and 11 ovigerous females). The greatest depth, predominance of very fine sand and highest mean value of organic matter contents of sediment, in combination with the low temperatures registered in winter (July and August), determined the presence of L. loxochelis in the subarea located at the Ubatuba Bay mouth, exposed to the open sea with high water current energy, important because this position insures that spawned larvae will enter into the oceanic circulation.
Resumo:
Autonomous robots must be able to learn and maintain models of their environments. In this context, the present work considers techniques for the classification and extraction of features from images in joined with artificial neural networks in order to use them in the system of mapping and localization of the mobile robot of Laboratory of Automation and Evolutive Computer (LACE). To do this, the robot uses a sensorial system composed for ultrasound sensors and a catadioptric vision system formed by a camera and a conical mirror. The mapping system is composed by three modules. Two of them will be presented in this paper: the classifier and the characterizer module. The first module uses a hierarchical neural network to do the classification; the second uses techiniques of extraction of attributes of images and recognition of invariant patterns extracted from the places images set. The neural network of the classifier module is structured in two layers, reason and intuition, and is trained to classify each place explored for the robot amongst four predefine classes. The final result of the exploration is the construction of a topological map of the explored environment. Results gotten through the simulation of the both modules of the mapping system will be presented in this paper. © 2008 IEEE.
Resumo:
Predicting and mapping productivity areas allows crop producers to improve their planning of agricultural activities. The primary aims of this work were the identification and mapping of specific management areas allowing coffee bean quality to be predicted from soil attributes and their relationships to relief. The study area was located in the Southeast of the Minas Gerais state, Brazil. A grid containing a total of 145 uniformly spaced nodes 50 m apart was established over an area of 31. 7 ha from which samples were collected at depths of 0. 00-0. 20 m in order to determine physical and chemical attributes of the soil. These data were analysed in conjunction with plant attributes including production, proportion of beans retained by different sieves and drink quality. The results of principal component analysis (PCA) in combination with geostatistical data showed the attributes clay content and available iron to be the best choices for identifying four crop production environments. Environment A, which exhibited high clay and available iron contents, and low pH and base saturation, was that providing the highest yield (30. 4l ha-1) and best coffee beverage quality (61 sacks ha-1). Based on the results, we believe that multivariate analysis, geostatistics and the soil-relief relationships contained in the digital elevation model (DEM) can be effectively used in combination for the hybrid mapping of areas of varying suitability for coffee production. © 2012 Springer Science+Business Media New York.
Resumo:
Some machine learning methods do not exploit contextual information in the process of discovering, describing and recognizing patterns. However, spatial/temporal neighboring samples are likely to have same behavior. Here, we propose an approach which unifies a supervised learning algorithm - namely Optimum-Path Forest - together with a Markov Random Field in order to build a prior model holding a spatial smoothness assumption, which takes into account the contextual information for classification purposes. We show its robustness for brain tissue classification over some images of the well-known dataset IBSR. © 2013 Springer-Verlag.
Resumo:
Vinte e sete amostras de mel, produzidas em dez cidades do Estado do Pará (Região Amazônica, norte do Brasil) por três espécies diferentes de abelhas (Apis mellifera, Melipona fasciculata e Melipona flavoneata), foram analisadas em seus teores de elementos minerais (Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Sr e Zn) e alguns parâmetros fisicoquímicos (cor, umidade, densidade, pH, sólidos insolúveis e solúveis totais, cinzas, condutividade elétrica, índice de formol, acidez livre, hidroximetilfurfural, açúcares redutores e totais e sacarose). Os teores minerais foram determinados via espectrometria de emissão atômica por plasma acoplado indutivamente (ICP OES) e as análises dos parâmetros físico-químicos seguiram metodologias oficiais. Os resultados das análises físico-químicas apresentaram-se de acordo com a legislação nacional e internacional, bem como com outros trabalhos similares ao redor do mundo. A análise estatística multivariada (análise por agrupamento hierárquico (HCA) e por componentes principais (PCA)) foi aplicada aos resultados dos teores metálicos e aos parâmetros físico-químicos, sendo possível a separação das amostras de mel conforme a espécie produtora.
Resumo:
Pós-graduação em Geografia - FCT
Resumo:
This study aimed to analyze the spatial distribution of dengue risk and its association with socio-environmental conditions. This was an ecological study of the counts of autochthonous dengue cases in the municipality of Campinas, São Paulo State, Brazil, in the year 2007, aggregated according to 47 coverage areas of municipal health centers. Spatial models for mapping diseases were constructed with Bayesian hierarchical models, based on Integrated Nested Laplace Approximation (INLA). The analyses were stratified according to two age groups, 0 to 14 years and above 14 years. The results indicate that the spatial distribution of dengue risk is not associated with socio-environmental conditions in the 0 to 14 year age group. In the age group older than 14 years, the relative risk of dengue increases significantly as the level of socio-environmental deprivation increases. Mapping of socio-environmental deprivation and dengue cases proved to be a useful tool for data analysis in dengue surveillance systems.
Resumo:
The Amazon River floodplain is an important source of atmospheric CO2 and CH4. Aquatic herbaceous vegetation (macrophytes) have been shown to contribute significantly to floodplain net primary productivity (NPP) and methane emission in the region. Their fast growth rates under both flooded and dry conditions make herbaceous vegetation the most variable element in the Amazon floodplain NPP budget, and the most susceptible to environmental changes. The present study combines multitemporal Radarsat-1 and MODIS images to monitor spatial and temporal changes in herbaceous vegetation cover in the Amazon floodplain. Radarsat-1 images were acquired from Dec/2003 to Oct/2005, and MODIS daily surface reflectance products were acquired for the two cloud-free dates closest to each Radarsat-1 acquisition. An object-based, hierarchical algorithm was developed using the temporal SAR information to discriminate Permanent Open Water (OW), Floodplain (FP) and Upland (UL) classes at Level 1, and then subdivide the FP class into Woody Vegetation (WV) and Possible Macrophytes (PM) at Level 2. At Level 3, optical and SAR information were combined to discriminate actual herbaceous cover at each date. The resulting maps had accuracies ranging from 80% to 90% for Level 1 and 2 classifications, and from 60% to 70% for Level 3 classifications, with kappa values ranging between 0.7 and 0.9 for Levels 1 and 2 and between 0.5 and 0.6 for Level 3. All study sites had noticeable variations in the extent of herbaceous cover throughout the hydrological year, with maximum areas up to four times larger than minimum areas. The proposed classification method was able to capture the spatial pattern of macrophyte growth and development in the studied area, and the multitemporal information was essential for both separating vegetation cover types and assessing monthly variation in herbaceous cover extent.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Background: Cancer is the second leading cause of death in Argentina, and there is little knowledge about its incidence. The first study based on population-based cancer registry described spatial incidence and indicated that there existed at least county-level aggregation. The aim of the present work is to model the incidence patterns for the most incidence cancer in Córdoba Province, Argentina, using information from the Córdoba Cancer Registry by performing multilevel mixed model approach to deal with dependence and unobserved heterogeneity coming from the geo-reference cancer occurrence. Methods: Standardized incidence rates (world standard population) (SIR) by sex based on 5-year age groups were calculated for 109 districts nested on 26 counties for the most incidence cancers in Cordoba using 2004 database. A Poisson twolevel random effect model representing unobserved heterogeneity between first level-districts and second level-counties was fitted to assess the spatial distribution of the overall and site specific cancer incidence rates. Results: SIR cancer at Córdoba province shown an average of 263.53±138.34 and 200.45±98.30 for men and women, respectively. Considering the ratio site specific mean SIR to the total mean, breast cancer ratio was 0.25±0.19, prostate cancer ratio was 0.12±0.10 and lower values for lung and colon cancer for both sexes. The Poisson two-level random intercepts model fitted for SIR data distributed with overdispersion shown significant hierarchical structure for the cancer incidence distribution. Conclusions: a strong spatial-nested effect for the cancer incidence in Córdoba was observed and will help to begin the study of the factors associated with it.