927 resultados para Hepatic drug metabolism
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Dapsone use is frequently associated to hematological side effects such as methemoglobinemia and hemolytic anemia, which are related to N-hydroxylation mediated by the P450 enzyme system. The aim of the present study was to evaluate the influence of L-arginine supplementation, a precursor for the synthesis of nitric oxide, as single or multiple dose regimens on dapsone-induced methemoglobinemia. Male Wistar rats were treated with L-arginine at 5, 15, 30, 60 and 180 mg/kg doses (p.o., gavage) in single or multiple dose regimens 2 hours prior to dapsone administration (40 mg/kg, i.p.). The effect of the nitric oxide synthase inhibitor L-NAME was investigated by treatment with multiple doses of 30 mg/kg (p.o., gavage) 2 hours before dapsone administration. Blood samples were collected 2 hours after dapsone administration. Erythrocytic methemoglobin levels were assayed by spectrophotometry. The results showed that multiple dose supplementations with 5 and 15 mg/kg L-arginine reduced dapsone-induced methemoglobin levels. This effect is mediated by nitric oxide formation, since the reduction in methemoglobin levels by L-arginine is blocked by simultaneous administration with L-NAME, a nitric oxide synthase inhibitor.
Resumo:
Abstract Background N-acetyltransferase type 2 (Nat2) is a phase II drug- metabolizing enzyme that plays a key role in the bioactivation of aromatic and heterocyclic amines. Its relevance in drug metabolism and disease susceptibility remains a central theme for pharmacogenetic research, mainly because of its genetic variability among human populations. In fact, the evolutionary and ethnic-specific SNPs on the NAT2 gene remain a focus for the potential discoveries in personalized drug therapy and genetic markers of diseases. Despite the wide characterization of NAT2 SNPs frequency in established ethnic groups, little data are available for highly admixed populations. In this context, five common NAT2 SNPs (G191A, C481T, G590A, A803G and G857A) were investigated in a highly admixed population comprised of Afro-Brazilians, Whites, and Amerindians in northeastern Brazil. Thus, we sought to determine whether the distribution of NAT2 polymorphism is different among these three ethnic groups. Results Overall, there were no statistically significant differences in the distribution of NAT2 polymorphism when Afro-Brazilian and White groups were compared. Even the allele frequency of 191A, relatively common in African descendents, was not different between the Afro-Brazilian and White groups. However, allele and genotype frequencies of G590A were significantly higher in the Amerindian group than either in the Afro-Brazilian or White groups. Interestingly, a haplotype block between G590A and A803G was verified exclusively among Amerindians. Conclusions Our results indicate that ethnic admixture might contribute to a particular pattern of genetic diversity in the NAT2 gene and also offer new insights for the investigation of possible new NAT2 gene-environment effects in admixed populations.
Resumo:
La farmacogenetica fornisce un importante strumento utile alla prescrizione farmacologica, migliorando l’efficacia terapeutica ed evitando le reazioni avverse. Il citocromo P450 gioca un ruolo centrale nel metabolismo di molti farmaci utilizzati nella pratica clinica e il suo polimorfismo genetico spiega in gran parte le differenze interindividuali nella risposta ai farmaci. Con riferimento alla terapia della narcolessia, occorre premettere che la narcolessia con cataplessia è una ipersonnia del Sistema Nervoso Centrale caratterizzata da eccessiva sonnolenza diurna, cataplessia, paralisi del sonno, allucinazioni e sonno notturno disturbato. Il trattamento d’elezione per la narcolessia include stimolanti dopaminergici per la sonnolenza diurna e antidepressivi per la cataplessia, metabolizzati dal sistema P450. Peraltro, poiché studi recenti hanno attestato un’alta prevalenza di disturbi alimentari nei pazienti affetti da narcolessia con cataplessia, è stata ipotizzata una associazione tra il metabolismo ultrarapido del CYP2D6 e i disturbi alimentari. Lo scopo di questa ricerca è di caratterizzare il polimorfismo dei geni CYP2D6, CYP2C9, CYP2C19, CYP3A4, CYP3A5 e ABCB1 coinvolti nel metabolismo e nel trasporto dei farmaci in un campione di 108 pazienti affetti da narcolessia con cataplessia, e valutare il fenotipo metabolizzatore in un sottogruppo di pazienti che mostrano un profilo psicopatologico concordante con la presenza di disturbi alimentari. I risultati hanno mostrato che il fenotipo ultrarapido del CYP2D6 non correla in maniera statisticamente significativa con i disturbi alimentari, di conseguenza il profilo psicopatologico rilevato per questo sottogruppo di pazienti potrebbe essere parte integrante del fenotipo sintomatologico della malattia. I risultati della tipizzazione di tutti i geni analizzati mostrano un’alta frequenza di pazienti con metabolismo intermedio, elemento potenzialmente in grado di influire sulla risposta terapeutica soprattutto in caso di regime politerapico, come nel trattamento della narcolessia. In conclusione, sarebbe auspicabile l’esecuzione del test farmacogenetico in pazienti affetti da narcolessia con cataplessia.
Resumo:
Altern geht mit einer Reihe physiologischer Veränderungen einher. Da in höherem Lebensalter überdurchschnittlich viele Arzneistoffe eingenommen werden und häufig mehrere Erkrankungen gleichzeitig vorliegen, können Auffälligkeiten in den Arzneimittelkonzentrationen im Blut nicht nur altersbedingt, sondern auch krankheitsbedingt oder durch Arzneimittelwechselwirkungen verursacht sein.rnrnDie vorliegende Arbeit untersucht die Fragestellung, ob der Arzneimittelmetabolismus bei Alterspatenten generell, oder nur bei Patienten mit Multimorbidität und –medikation verändert ist, und in welchem Lebensalter diese Veränderungen einsetzen. Im Mittelpunkt stand dabei die Frage, ob die Aktivitäten distinkter Arzneimittel-abbauender Enzyme der Cytochrom P450-Enzym-Familie (CYP) verändert sind. Da viele Psychopharmaka nur bei Patienten im Alter zwischen 18 und 65 Jahren zugelassen sind, wurde die Hypothese geprüft, dass sich Patienten im Alter über und unter 65 Jahren in ihren Medikamentenspiegeln unterscheiden.rnrnFür die Untersuchungen wurde eine Datenbank aus Blutspiegelmessungen erstellt, die im Rahmen des pharmakotherapiebegleitenden TDM erhoben worden waren. Die Blutspiegel stammten von insgesamt 4197 Patienten, die mit Amisulprid, Aripiprazol, Citalopram, Clozapin, Donepezil, Escitalopram, Mirtazapin, Quetiapin, Risperidon, Sertralin, Venlafaxin oder Ziprasidon behandelt wurden. Die Messungen wurden ergänzt mit Angaben aus den TDM-Anforderungsscheinen bezüglich Tagesdosis, Begleitmedikamenten, Schweregrad der Erkrankung, Therapieerfolg und Verträglichkeit der Medikation. Zusätzlich wurden klinische Befunde der Leber- und Nierenfunktion einbezogen, sowie Angaben zur Berechnung des BMI. Die in vivo-CYP-Enzymaktivitäten wurden anhand von metabolischen Ratios (Serumkonzentrationen Metabolit/ Serumkonzentration Muttersubstanz) beurteilt.rnrnIm Mittel stieg der Schweregrad der Erkrankung mit dem Alter und der Therapieerfolg verschlechterte sich. Dies betraf im Einzelnen nur Patienten, die mit Amisulprid oder Clozapin behandelt worden waren. Ältere Patienten litten häufiger an Nebenwirkungen als jüngere.rnUnter Aripiprazol, Quetiapin, Sertralin und Venlafaxin erreichten Alterspatienten mit niedrigeren Tagesdosen gleiche Therapieerfolge wie jüngere Patienten.rnPatienten, die mit Clozapin oder Amisulprid behandelt wurden, zeigten im Alter schlechtere Behandlungserfolge bei gleicher (Clozapin) bzw. niedrigerer (Amisulprid) Tagesdosis.rnTherapieerfolg und mittlere Tagesdosis änderten sich bei Patienten, die Ziprasidon, Donepezil, Citalopram, Escitalopram und Mirtazapin einnahmen, nicht altersabhängig.rnrnAltersabhängige Unterschiede der Serumspiegel zeigten sich für Amisulprid, Aripiprazol, Donepezil, Mirtazapin, Desmethylmirtazapin, Quetiapin und DesmethylsertralinrnAllerdings lagen die Altersgrenzen außer bei Donepezil deutlich niedriger als die gängig angenommene, nämlich bei 35 Jahren (Aripiprazol), 70 Jahren (Donepezil), 55 Jahren (D-Sertralin), 41 Jahren (Amisulprid), 49 Jahren (Quetiapin) und 58 Jahren (Mirtazapin).rnEs bestand kein Zusammenhang zwischen dem Auftreten veränderter Serumspiegel im Alter und dem Verteilungsvolumen, der Plasmaproteinbindung oder der Eliminationshalbwertszeit der untersuchten Wirkstoffe.rnrnBei Patienten ohne Comedikation fand sich in keinem Fall eine altersabhängige Veränderung der Ratio. Es ergab sich daher kein Hinweis auf eine Veränderung der CYP-Aktivität im Alter. Die Einnahme von Comedikation nahm mit dem Alter zu, hierfür ließ sich eine Altersgrenze von 49 Jahren definieren. Unter Polytherapie wurden Veränderungen der CYP-Aktivität beobachtet.rnrnDer Einfluss veränderter Leber- oder Nierenfunktion auf die Biotransformation von Pharmaka wurde anhand von Serumspiegeln von Patienten, die mit Donepezil, Venlafaxin, Citalopram oder Escitalopram behandelt wurden, untersucht. rnBei keinem Wirkstoff wurden unter auffälligen Leber- oder Nierenparametern signifikant veränderte Serumspiegel gemessen.rnEine Abhängigkeit der Serumspiegel vom Körpergewicht wurde nur für Desmethylsertralin gefunden. Die Spiegel waren bei Patienten mit einem Body Mass Index unter 20 signifikant höher als bei Patienten mit einem Index über 20. Aufgrund der kleinen Fallgruppe und der Tatsache, dass der Serumspiegel der Muttersubstanz nicht stieg, konnte nicht zwingend von einem Alterseinfluss aufgrund der veränderten Körperzusammensetzung ausgegangen werden.rnInsgesamt ergaben sich aus den Untersuchungen Hinweise auf moderate altersabhängige Veränderungen der Pharmakokinetik. Es ließen sich allerdings keine allgemeinen Dosierempfehlungen für Alterspatienten ableiten. Es zeigte sich jedoch, dass mit altersabhängigen Veränderungen der Pharmakokinetik bereits nach dem 50. Lebensjahr zu rechnen ist. Weitere Untersuchungen sollten auch den Alterseffekt auf gastrointestinale Transporter einbeziehen, die die aktive Aufnahme von Arzneistoffen ins Blut bewerkstelligen. Unklar ist auch die Rolle des Alterns auf die Aktivität des P-Glykoproteins. rn
Resumo:
During the past two decades, chiral capillary electrophoresis (CE) emerged as a promising, effective and economic approach for the enantioselective determination of drugs and their metabolites in body fluids, tissues and in vitro preparations. This review discusses the principles and important aspects of CE-based chiral bioassays, provides a survey of the assays developed during the past 10 years and presents an overview of the key achievements encountered in that time period. Applications discussed encompass the pharmacokinetics of drug enantiomers in vivo and in vitro, the elucidation of the stereoselectivity of drug metabolism in vivo and in vitro, and bioanalysis of drug enantiomers of toxicological, forensic and doping interest. Chiral CE was extensively employed for research purposes to investigate the stereoselectivity associated with hydroxylation, dealkylation, carboxylation, sulfoxidation, N-oxidation and ketoreduction of drugs and metabolites. Enantioselective CE played a pivotal role in many biomedical studies, thereby providing new insights into the stereoselective metabolism of drugs in different species which might eventually lead to new strategies for optimization of pharmacotherapy in clinical practice.
Resumo:
Cytochrome P450 enzymes (CYP450s) represent a superfamily of haem-thiolate proteins. CYP450s are most abundant in the liver, a major site of drug metabolism, and play key roles in the metabolism of a variety of substrates, including drugs and environmental contaminants. Interaction of two or more different drugs with the same enzyme can account for adverse effects and failure of therapy. Human CYP3A4 metabolizes about 50% of all known drugs, but little is known about the orthologous CYP450s in horses. We report here the genomic organization of the equine CYP3A gene cluster as well as a comparative analysis with the human CYP3A gene cluster. The equine CYP450 genes of the 3A family are located on ECA 13 between 6.97-7.53 Mb, in a region syntenic to HSA 7 99.05-99.35 Mb. Seven potential, closely linked equine CYP3A genes were found, in contrast to only four genes in the human genome. RNA was isolated from an equine liver sample, and the approximately 1.5-kb coding sequence of six CYP3A genes could be amplified by RT-PCR. Sequencing of the RT-PCR products revealed numerous hitherto unknown single nucleotide polymorphisms (SNPs) in these six CYP3A genes, and one 6-bp deletion compared to the reference sequence (EquCab2.0). The presence of the variants was confirmed in a sample of genomic DNA from the same horse. In conclusion, orthologous genes for the CYP3A family exist in horses, but their number differs from those of the human CYP3A gene family. CYP450 genes of the same family show high homology within and between mammalian species, but can be highly polymorphic.
Resumo:
Cannabinoids exert neuroprotective and symptomatic effects in amyotrophic lateral sclerosis (ALS). We assessed the pharmacokinetics (PK) and tolerability of delta-9-tetrahydrocannabinol (THC) in ALS patients.
Resumo:
Liver kidney microsomal type 1 (LKM-1) antibodies have been shown to decrease the CYP2D6 activity in vitro and are present in a minority of patients with chronic hepatitis C infection. We investigated whether LKM-1 antibodies might reduce the CYP2D6 activity in vivo. All patients enrolled in the Swiss Hepatitis C Cohort Study and tested for LKM-1 antibodies were assessed (n = 1723): 10 eligible patients were matched with patients without LKM-1 antibodies. Patients were genotyped for CYP2D6 variants to exclude individuals with a poor metabolizer genotype. CYP2D6 activity was measured by a specific substrate using the dextromethorphan/dextrorphan metabolic ratio to classify patients into four activity phenotypes. All patients had a CYP2D6 extensive metabolizer genotype. The observed phenotype was concordant with the CYP2D6 genotype in most LKM-negative patients, whereas only three LKM-1 positive patients had a concordant phenotype (six presented an intermediate and one a poor metabolizer phenotype). The median DEM/DOR ratio was sixfold higher in LKM-1 positive than in LKM-1 negative patients (0.096 vs. 0.016, P = 0.004), indicating that CYP2D6 metabolic function was significantly reduced in the presence of LKM-1 antibodies. In chronic hepatitis C patients with LKM-1 antibodies, the CYP2D6 metabolic activity was on average reduced by 80%. The impact of LKM-1 antibodies on CYP2D6-mediated drug metabolism pathways warrants further translational studies.
Resumo:
Considerable unexplained intersubject variability in the debrisoquine metabolic ratio (urinary debrisoquine/4-hydroxydebrisoquine) exists within individual CYP2D6 genotypes. We speculated that debrisoquine was converted to as yet undisclosed metabolites. Thirteen healthy young volunteers, nine CYP2D6*1 homozygotes [extensive metabolizers (EMs)] and four CYP2D6*4 homozygotes [poor metabolizers (PMs)] took 12.8 mg of debrisoquine hemisulfate by mouth and collected 0- to 8- and 8- to 24-h urines, which were analyzed by gas chromatography-mass spectrometry (GCMS) before and after treatment with beta-glucuronidase. Authentic 3,4-dehydrodebrisoquine was synthesized and characterized by GCMS, liquid chromatography-tandem mass spectrometry, and (1)H NMR. 3,4-Dehydrodebrisoquine is a novel metabolite of debrisoquine excreted variably in 0- to 24-h urine, both in EMs (3.1-27.6% of dose) and PMs (0-2.1% of dose). This metabolite is produced from 4-hydroxydebrisoquine in vitro by human and rat liver microsomes. A previously unstudied CYP2D6*1 homozygote was administered 10.2 mg of 4-hydroxydebrisoquine orally and also excreted 3,4-dehydrodebrisoquine. EMs excreted 6-hydroxydebrisoquine (0-4.8%) and 8-hydroxydebrisoquine (0-1.3%), but these phenolic metabolites were not detected in PM urine. Debrisoquine and 4-hydroxydebrisoquine glucuronides were excreted in a highly genotype-dependent manner. A microsomal activity that probably does not involve cytochrome P450 participates in the further metabolism of 4-hydroxydebrisoquine, which we speculate may also lead to the formation of 1- and 3-hydroxydebrisoquine and their ring-opened products. In conclusion, this study suggests that the traditional metabolic ratio is not a true measure of the debrisoquine 4-hydroxylation capacity of an individual and thus may, in part, explain the wide intragenotype variation in metabolic ratio.
Resumo:
All microsomal P450s require POR (cytochrome P450 reductase) for catalytic activity. Most of the clinically used drugs are metabolized by a small number of P450s and polymorphisms in the cytochrome P450s are known to cause changes in drug metabolism. We have recently found a number of POR missense mutations in the patients with disordered steroidogenesis. Our initial report described five missense mutations (A284P, R454H, V489E, C566Y and V605F) identified in four patients. We built bacterial expression vectors for each POR variant, purified the membranes expressing normal or variant POR and characterized their activities with cytochrome c and P450c17 assays. We have recently completed an extensive study of the range of POR mutations and characterized the mutants/polymorphisms A112V, T139A, M260V, Y456H, A500V, G536R, L562P, R613X, V628I and F643del from sequencing of patient DNA. We also studied POR variants Y179D, P225L, R313W, G410S and G501R that were available in databases or the published literature. We analysed the mutations with a three-dimensional model of human POR that was based on an essentially similar rat POR with known crystal structure. The missense mutations found in patients with disordered steroidogenesis mapped to functionally important domains of POR and the apparent polymorphisms mapped to less crucial regions. Since a variation in POR can alter the activity of all microsomal P450s, it can also affect the drug metabolism even with a normal P450. Understanding the genetic and biochemical basis of POR-mediated drug metabolism will provide valuable information about possible differences in P450-mediated reactions among the individuals carrying a variant or polymorphic form of POR.
Resumo:
ASM 981 has been developed for topical treatment of inflammatory skin diseases. It specifically inhibits the production and release of pro-inflammatory cytokines. We measured the skin penetration of ASM 981 in canine skin and compared penetration in living and frozen skin. To make penetration of ASM 981 visible in dog skin, tritium labelled ASM 981 was applied to a living dog and to defrosted skin of the same dog. Using qualitative autoradiography the radioactive molecules were detected in the lumen of the hair follicles until the infundibulum, around the superficial parts of the hair follicles and into a depth of the dermis of 200 to 500 microm. Activity could not be found in deeper parts of the hair follicles, the dermis or in the sebaceous glands. Penetration of ASM 981 is low in canine skin and is only equally spread in the upper third of the dermis 24 hours after application. Penetration in frozen skin takes even longer than in living canine skin but shows the same distribution.
Resumo:
BACKGROUND: T-cell-mediated hypersensitivity is a rare but serious manifestation of drug therapy. OBJECTIVES: To explore the mechanisms of drug presentation to T cells and the possibility that generation of metabolite-specific T cells may provoke cross-sensitization between drugs. METHODS: A lymphocyte transformation test was performed on 13 hypersensitive patients with carbamazepine, oxcarbazepine, and carbamazepine metabolites. Serial dilution experiments were performed to generate drug (metabolite)-specific T-cell clones to explore the structural basis of the T-cell response and mechanisms of antigen presentation. 3-Dimensional energy-minimized structures were generated by using computer modeling. The role of drug metabolism was analyzed with 1-aminobenzotriazole. RESULTS: Lymphocytes and T-cell clones proliferated with carbamazepine, oxcarbazepine, and some (carbamazepine 10,11 epoxide, 10-hydroxy carbamazepine) but not all stable carbamazepine metabolites. Structure activity studies using 29 carbamazepine (metabolite)-specific T-cell clones revealed 4 patterns of drug recognition, which could be explained by generation of preferred 3-dimensional structural conformations. T cells were stimulated by carbamazepine (metabolites) bound directly to MHC in the absence of processing. The activation threshold for T-cell proliferation varied between 5 minutes and 4 hours. 1-Aminobenzotriazole, which inhibits cytochrome P450 activity, did not prevent carbamazepine-related T-cell proliferation. Substitution of the terminal amine residue of carbamazepine with a methyl group diminished T-cell proliferation. CONCLUSION: These data show that carbamazepine and certain stable carbamazepine metabolites stimulate T cells rapidly via a direct interaction with MHC and specific T-cell receptors. CLINICAL IMPLICATIONS: Some patients with a history of carbamazepine hypersensitivity possess T cells that cross-react with oxcarbazepine, providing a rationale for cross-sensitivity between the 2 drugs.
Resumo:
Mutations in NADPH P450 oxidoreductase (POR) cause a broad spectrum of human disease with abnormalities in steroidogenesis. We have studied the impact of P450 reductase mutations on the activity of CYP19A1. POR supported CYP19A1 activity with a calculated Km of 126 nm for androstenedione and a Vmax of 1.7 pmol/min. Mutations R457H and V492E located in the FAD domain of POR that disrupt electron transfer caused a complete loss of CYP19A1 activity. The A287P mutation of POR decreased the activities of CYP17A1 by 60-80% but had normal CYP19A1 activity. Molecular modeling and protein docking studies suggested that A287P is involved in the interaction of POR:CYP17A1 but not in the POR:CYP19A1 interaction. Mutations C569Y and V608F in the NADPH binding domain of POR had 49 and 28% of activity of CYP19A1 compared with normal reductase and were more sensitive to the amount of NADPH available for supporting CYP19A1 activity. Substitution of NADH for NADPH had a higher impact on C569Y and V608F mutants of POR. Similar effects were obtained at low/high (5.5/8.5) pH, but using octanol to limit the flux of electrons from POR to CYP19A1 inhibited activity supported by all variants. High molar ratios of KCl also reduced the CYP19A1 supporting activities of C569Y and V608F mutants of POR to a greater extent compared to normal POR and A287P mutant. Because POR supports many P450s involved in steroidogenesis, bone formation, and drug metabolism, variations in the effects of POR mutations on specific enzyme activities may explain the broad clinical spectrum of POR deficiency.
Resumo:
BACKGROUND: Several epidemiological studies show that inhalation of particulate matter may cause increased pulmonary morbidity and mortality. Of particular interest are the ultrafine particles that are particularly toxic. In addition more and more nanoparticles are released into the environment; however, the potential health effects of these nanoparticles are yet unknown. OBJECTIVES: To avoid particle toxicity studies with animals many cell culture models have been developed during the past years. METHODS: This review focuses on the most commonly used in vitro epithelial airway and alveolar models to study particle-cell interactions and particle toxicity and highlights advantages and disadvantages of the different models. RESULTS/CONCLUSION: There are many lung cell culture models but none of these models seems to be perfect. However, they might be a great tool to perform basic research or toxicity tests. The focus here is on 3D and co-culture models, which seem to be more realistic than monocultures.