964 resultados para Heat tranfer in vessel


Relevância:

100.00% 100.00%

Publicador:

Resumo:

"ORNL-985."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we examine the effect of contact angle (or surface wettability) on the convective heat transfer coefficient in microchannels. Slip flow, where the fluid velocity at the wall is non-zero, is most likely to occur in microchannels due to its dependence on shear rate or wall shear stress. We show analytically that for a constant pressure drop, the presence of slip increases the Nusselt number. In a microchannel heat exchanger we modified the surface wettability from a contact angle of 20 degrees-120 degrees using thin film coating technology. Apparent slip flow is implied from pressure and flow rate measurements with a departure from classical laminar friction coefficients above a critical shear rate of approximately 10,000 s(-1). The magnitude of this departure is dependant on the contact angle with higher contact angles surfaces exhibiting larger pressure drop decreases. Similarly, the non-dimensional heat flux is found to decrease relative to laminar non-slip theory, and this decrease is also a function of the contact angle. Depending on the contact angle and the wall shear rate, variations in the heat transfer rate exceeding 10% can be expected. Thus the contact angle is an important consideration in the design of micro, and even more so, nano heat exchangers. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is a study of heat transfer in a lift-off furnace which is employed in the batch annealing of a stack of coils of steel strip. The objective of the project is to investigate the various factors which govern the furnace design and the heat transfer resistances, so as to reduce the time of the annealing cycle, and hence minimize the operating costs. The work involved mathematical modelling of patterns of gas flow and modes of heat transfer. These models are: Heat conduction and its conjectures in the steel coils;Convective heat transfer in the plates separating the coils in the stack and in other parts of the furnace; and Radiative and convective heat transfer in the furnace by using the long furnace model. An important part of the project is the development of numerical methods and computations to solve the transient models. A limited number of temperature measurements was available from experiments on a test coil in an industrial furnace. The mathematical model agreed well with these data. The model has been used to show the following characteristics of annealing furnaces, and to suggest further developments which would lead to significant savings: - The location of the limiting temperature in a coil is nearer to the hollow core than to the outer periphery. - Thermal expansion of the steel tends to open the coils, reduces their thermal conductivity in the radial direction, and hence prolongs the annealing cycle. Increasing the tension in the coils and/or heating from the core would overcome this heat transfer resistance. - The shape and dimensions of the convective channels in the plates have significant effect on heat convection in the stack. An optimal design of a channel is shown to be of a width-to-height ratio equal to 9. - Increasing the cooling rate, by using a fluidized bed instead of the normal shell and tube exchanger, would shorten the cooling time by about 15%, but increase the temperature differential in the stack. - For a specific charge weight, a stack of different-sized coils will have a shorter annealing cycle than one of equally-sized coils, provided that production constraints allow the stacking order to be optimal. - Recycle of hot flue gases to the firing zone of the furnace would produce a. decrease in the thermal efficiency up to 30% but decreases the heating time by about 26%.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we investigate an application of the method of fundamental solutions (MFS) to transient heat conduction in layered materials, where the thermal diffusivity is piecewise constant. Recently, in Johansson and Lesnic [A method of fundamental solutions for transient heat conduction. Eng Anal Boundary Elem 2008;32:697–703], a MFS was proposed with the sources placed outside the space domain of interest, and we extend that technique to numerically approximate the heat flow in layered materials. Theoretical properties of the method, as well as numerical investigations are included.