747 resultados para Healthcare Big Data Analytics
Resumo:
Relaatiotietokannat ovat olleet vallitseva suunta suurissa tietokantajärjestelmissä jo 80-luvulta lähtien. Viimeisen vuosikymmenen aikana lähes kaikki teollinen ja henkilökohtainen tiedonvaihto on siirtynyt sähköiseen maailmaan. Tämä on aiheuttanut valtaisan kasvun datamäärissä. Sama kasvu jatkuu edelleen eksponentiaalisesti. Samalla ei-relaatiotietokannat eli NoSQL-tietokannat ovat nousseet huomattavaan asemaan. Monet organisaatiot käsittelevät suuria määriä järjestämätöntä dataa, jolloin perinteisen relaatiotietokannan käyttö yksin ei välttämättä ole paras, tai edes riittävä vaihtoehto. Web 2.0 -termin takana oleva internet-kulttuurin muutos tukee mukautuvampia ja skaalautuvia NoSQL-järjestelmiä. Internetin käyttäjät, erityisesti sosiaalisessa mediassa tuottavat valtavia määriä järjestymätöntä dataa. Kerättävä tieto ei ole enää tietyn mallin mukaan muotoiltua, vaan yksittäiseen tietueeseen saattaa liittyä esimerkiksi kuvia, videoita, viittauksia muiden käyttäjien luomiin instansseihin tai osoitetietoja. Tässä tutkielmassa käsitellään NoSQL-järjestelmien rakennetta sekä asemaa erityisesti suurissa tietojärjestelmissä ja vertaillaan niiden hyötyjä ja haittoja relaatiotietokantojen suhteen.
Resumo:
The speed with which data has moved from being scarce, expensive and valuable, thus justifying detailed and careful verification and analysis to a situation where the streams of detailed data are almost too large to handle has caused a series of shifts to occur. Legal systems already have severe problems keeping up with, or even in touch with, the rate at which unexpected outcomes flow from information technology. The capacity to harness massive quantities of existing data has driven Big Data applications until recently. Now the data flows in real time are rising swiftly, become more invasive and offer monitoring potential that is eagerly sought by commerce and government alike. The ambiguities as to who own this often quite remarkably intrusive personal data need to be resolved – and rapidly - but are likely to encounter rising resistance from industrial and commercial bodies who see this data flow as ‘theirs’. There have been many changes in ICT that has led to stresses in the resolution of the conflicts between IP exploiters and their customers, but this one is of a different scale due to the wide potential for individual customisation of pricing, identification and the rising commercial value of integrated streams of diverse personal data. A new reconciliation between the parties involved is needed. New business models, and a shift in the current confusions over who owns what data into alignments that are in better accord with the community expectations. After all they are the customers, and the emergence of information monopolies needs to be balanced by appropriate consumer/subject rights. This will be a difficult discussion, but one that is needed to realise the great benefits to all that are clearly available if these issues can be positively resolved. The customers need to make these data flow contestable in some form. These Big data flows are only going to grow and become ever more instructive. A better balance is necessary, For the first time these changes are directly affecting governance of democracies, as the very effective micro targeting tools deployed in recent elections have shown. Yet the data gathered is not available to the subjects. This is not a survivable social model. The Private Data Commons needs our help. Businesses and governments exploit big data without regard for issues of legality, data quality, disparate data meanings, and process quality. This often results in poor decisions, with individuals bearing the greatest risk. The threats harbored by big data extend far beyond the individual, however, and call for new legal structures, business processes, and concepts such as a Private Data Commons. This Web extra is the audio part of a video in which author Marcus Wigan expands on his article "Big Data's Big Unintended Consequences" and discusses how businesses and governments exploit big data without regard for issues of legality, data quality, disparate data meanings, and process quality. This often results in poor decisions, with individuals bearing the greatest risk. The threats harbored by big data extend far beyond the individual, however, and call for new legal structures, business processes, and concepts such as a Private Data Commons.
Resumo:
66 p.
Resumo:
Comunicação apresentada na 44th SEFI Conference, 12-15 September 2016, Tampere, Finland
Resumo:
La mia tesi si occupa di trattare come, attraverso questo nuovo prodotto dell’informatica chiamato big data, si possano ottenere informazioni e fare previsioni sull’andamento del turismo.
Resumo:
Dato il recente avvento delle tecnologie NGS, in grado di sequenziare interi genomi umani in tempi e costi ridotti, la capacità di estrarre informazioni dai dati ha un ruolo fondamentale per lo sviluppo della ricerca. Attualmente i problemi computazionali connessi a tali analisi rientrano nel topic dei Big Data, con databases contenenti svariati tipi di dati sperimentali di dimensione sempre più ampia. Questo lavoro di tesi si occupa dell'implementazione e del benchmarking dell'algoritmo QDANet PRO, sviluppato dal gruppo di Biofisica dell'Università di Bologna: il metodo consente l'elaborazione di dati ad alta dimensionalità per l'estrazione di una Signature a bassa dimensionalità di features con un'elevata performance di classificazione, mediante una pipeline d'analisi che comprende algoritmi di dimensionality reduction. Il metodo è generalizzabile anche all'analisi di dati non biologici, ma caratterizzati comunque da un elevato volume e complessità, fattori tipici dei Big Data. L'algoritmo QDANet PRO, valutando la performance di tutte le possibili coppie di features, ne stima il potere discriminante utilizzando un Naive Bayes Quadratic Classifier per poi determinarne il ranking. Una volta selezionata una soglia di performance, viene costruito un network delle features, da cui vengono determinate le componenti connesse. Ogni sottografo viene analizzato separatamente e ridotto mediante metodi basati sulla teoria dei networks fino all'estrapolazione della Signature finale. Il metodo, già precedentemente testato su alcuni datasets disponibili al gruppo di ricerca con riscontri positivi, è stato messo a confronto con i risultati ottenuti su databases omici disponibili in letteratura, i quali costituiscono un riferimento nel settore, e con algoritmi già esistenti che svolgono simili compiti. Per la riduzione dei tempi computazionali l'algoritmo è stato implementato in linguaggio C++ su HPC, con la parallelizzazione mediante librerie OpenMP delle parti più critiche.
Resumo:
Thanks to the advanced technologies and social networks that allow the data to be widely shared among the Internet, there is an explosion of pervasive multimedia data, generating high demands of multimedia services and applications in various areas for people to easily access and manage multimedia data. Towards such demands, multimedia big data analysis has become an emerging hot topic in both industry and academia, which ranges from basic infrastructure, management, search, and mining to security, privacy, and applications. Within the scope of this dissertation, a multimedia big data analysis framework is proposed for semantic information management and retrieval with a focus on rare event detection in videos. The proposed framework is able to explore hidden semantic feature groups in multimedia data and incorporate temporal semantics, especially for video event detection. First, a hierarchical semantic data representation is presented to alleviate the semantic gap issue, and the Hidden Coherent Feature Group (HCFG) analysis method is proposed to capture the correlation between features and separate the original feature set into semantic groups, seamlessly integrating multimedia data in multiple modalities. Next, an Importance Factor based Temporal Multiple Correspondence Analysis (i.e., IF-TMCA) approach is presented for effective event detection. Specifically, the HCFG algorithm is integrated with the Hierarchical Information Gain Analysis (HIGA) method to generate the Importance Factor (IF) for producing the initial detection results. Then, the TMCA algorithm is proposed to efficiently incorporate temporal semantics for re-ranking and improving the final performance. At last, a sampling-based ensemble learning mechanism is applied to further accommodate the imbalanced datasets. In addition to the multimedia semantic representation and class imbalance problems, lack of organization is another critical issue for multimedia big data analysis. In this framework, an affinity propagation-based summarization method is also proposed to transform the unorganized data into a better structure with clean and well-organized information. The whole framework has been thoroughly evaluated across multiple domains, such as soccer goal event detection and disaster information management.
Resumo:
Semantics, knowledge and Grids represent three spaces where people interact, understand, learn and create. Grids represent the advanced cyber-infrastructures and evolution. Big data influence the evolution of semantics, knowledge and Grids. Exploring semantics, knowledge and Grids on big data helps accelerate the shift of scientific paradigm, the fourth industrial revolution, and the transformational innovation of technologies.
Resumo:
A pesar de la existencia de una multitud de investigaciones sobre el análisis de sentimiento, existen pocos trabajos que traten el tema de su implantación práctica y real y su integración con la inteligencia de negocio y big data de tal forma que dichos análisis de sentimiento estén incorporados en una arquitectura (que soporte todo el proceso desde la obtención de datos hasta su explotación con las herramientas de BI) aplicada a la gestión de la crisis. Se busca, por medio de este trabajo, investigar cómo se pueden unir los mundos de análisis (de sentimiento y crisis) y de la tecnología (todo lo relacionado con la inteligencia de negocios, minería de datos y Big Data), y crear una solución de Inteligencia de Negocios que comprenda la minería de datos y el análisis de sentimiento (basados en grandes volúmenes de datos), y que ayude a empresas y/o gobiernos con la gestión de crisis. El autor se ha puesto a estudiar formas de trabajar con grandes volúmenes de datos, lo que se conoce actualmente como Big Data Science, o la ciencia de los datos aplicada a grandes volúmenes de datos (Big Data), y unir esta tecnología con el análisis de sentimiento relacionado a una situación real (en este trabajo la situación elegida fue la del proceso de impechment de la presidenta de Brasil, Dilma Rousseff). En esta unión se han utilizado técnicas de inteligencia de negocios para la creación de cuadros de mandos, rutinas de ETC (Extracción, Transformación y Carga) de los datos así como también técnicas de minería de textos y análisis de sentimiento. El trabajo ha sido desarrollado en distintas partes y con distintas fuentes de datos (datasets) debido a las distintas pruebas de tecnología a lo largo del proyecto. Uno de los datasets más importantes del proyecto son los tweets recogidos entre los meses de diciembre de 2015 y enero de 2016. Los mensajes recogidos contenían la palabra "Dilma" en el mensaje. Todos los twittees fueron recogidos con la API de Streaming del Twitter. Es muy importante entender que lo que se publica en la red social Twitter no se puede manipular y representa la opinión de la persona o entidad que publica el mensaje. Por esto se puede decir que hacer el proceso de minería de datos con los datos del Twitter puede ser muy eficiente y verídico. En 3 de diciembre de 2015 se aceptó la petición de apertura del proceso del impechment del presidente de Brasil, Dilma Rousseff. La petición fue aceptada por el presidente de la Cámara de los Diputados, el diputado Sr. Eduardo Cunha (PMDBRJ), y de este modo se creó una expectativa sobre el sentimiento de la población y el futuro de Brasil. También se ha recogido datos de las búsquedas en Google referentes a la palabra Dilma; basado en estos datos, el objetivo es llegar a un análisis global de sentimiento (no solo basado en los twittees recogidos). Utilizando apenas dos fuentes (Twitter y búsquedas de Google) han sido extraídos muchísimos datos, pero hay muchas otras fuentes donde es posible obtener informaciones con respecto de las opiniones de las personas acerca de un tema en particular. Así, una herramienta que pueda recoger, extraer y almacenar tantos datos e ilustrar las informaciones de una manera eficaz que ayude y soporte una toma de decisión, contribuye para la gestión de crisis.
Resumo:
Objectives: To discuss how current research in the area of smart homes and ambient assisted living will be influenced by the use of big data. Methods: A scoping review of literature published in scientific journals and conference proceedings was performed, focusing on smart homes, ambient assisted living and big data over the years 2011-2014. Results: The health and social care market has lagged behind other markets when it comes to the introduction of innovative IT solutions and the market faces a number of challenges as the use of big data will increase. First, there is a need for a sustainable and trustful information chain where the needed information can be transferred from all producers to all consumers in a structured way. Second, there is a need for big data strategies and policies to manage the new situation where information is handled and transferred independently of the place of the expertise. Finally, there is a possibility to develop new and innovative business models for a market that supports cloud computing, social media, crowdsourcing etc. Conclusions: The interdisciplinary area of big data, smart homes and ambient assisted living is no longer only of interest for IT developers, it is also of interest for decision makers as customers make more informed choices among today's services. In the future it will be of importance to make information usable for managers and improve decision making, tailor smart home services based on big data, develop new business models, increase competition and identify policies to ensure privacy, security and liability.
Resumo:
The amount of data collected from an individual player during a football match has increased significantly in recent years, following technological evolution in positional tracking. However, given the short time that separates competitions, the common analysis of these data focuses on the magnitude of actions of each player, while considering either technical or physical perform- ance. This focus leads to a considerable amount of information not being taken into account in performance optimization, particularly while considering a sequence of different matches of the same team. In this presentation, we will present a tactical performance indicator that considers players’ overall positioning and their level of coordination during the match. This performance indicator will be applied in different time scales, with a particular focus on possible practical applications.