958 resultados para Hanlon, Jerry
Resumo:
Este documento han sido preparados para la asignatura de Animales Alternativo que se imparte en la carrera Ingeniería en Zootecnia dictado por el Departamento Sistemas Integrales de Producción Animal (SIPA) de la Facultad de Ciencia Animal. Gran parte del contenido está basado en recopilaciones de documento y de algunos artículos técnicos de páginas electrónicas de Internet. Si el lector encuentra en estos apuntes alguna información útil se la debo a las personas experimentadas en la crianza de cobayos y que han escrito e investigado sobre la producción de cuyes por los errores, que con seguridad existen, asumo total responsabilidad. El contenido de estos apuntes debe cubrir la mayor parte de los temas a tratar en la asignatura, pero en ningún caso reemplazar a un buen texto de estudio. Los cobayos son una especie que tiene un potencial excepcional que se podría utilizar como fuente de alimento en nuestro país, como se hacen en otros países de América del Sur que es platillo exquisito, esto podría contribuir a la seguridad alimentaria que enfrenta Nicaragua y a fomentar nuevas crianza de esta especia y romper un poco las barrera de habito Alimenticio y experimentar un nuevo sabor de carne con alto contenido en proteína y baja en colesterol, ya que esta especie se adapta a nuestra condiciones y en segundo lugar su alimentación se limita a pastos y hierbas. Además es un animal de crecimiento rápido, de alta prolificidad. Para la elaboración de este compendio, hice uso de bibliografía elaborada por varios estudiosos del cobayo, así como la experiencia que acumule en cuando tuve la oportunidad de trabajar con cobayos. Los aspectos principales abordados en el presente texto son: Ventaja del cobayo, Razas, diferente tipo de crianza Reproducción, Instalaciones, Alimentación, Registro, Enfermedades, Sacrificio y alguna receta que se puede preparar.
Resumo:
Working paper NPALB/87/21 submitted to the 10th North Pacific Albacore Workshop. Paper reports the results of ongoing research on validated age and growth models and the elucidation of stock structure for the North Pacific albacore. (Document pdf contains 22 pages)
Resumo:
(Document pdf contains 25 pages)
Resumo:
(Document pdf contains 19 pages)
Resumo:
Thousands of hectares of native plants and shallow open water habitat have been displaced in Lake Okeechobee’s marsh by the invasive exotic species torpedograss ( Panicum repens L.). The rate of torpedograss expansion, it’s areal distribution and the efficacy of herbicide treatments used to control torpedograss in the lake’s marsh were quantified using aerial color infra red (IR) photography.(PDF has 6 pages.)
Resumo:
The proportion of torpedograss tissue exposed to glyphosate at application rates of 0.28, 0.56, 1.12, 2.24, and 4.48 kg/ha affected control as measured by regrowth. The effect of tissue exposure was more pronounced as application rate decreased. This study suggests that higher rates of glyphosate need to be used during higher water levels, when less torpedograss tissue is exposed to herbicide spray and lower rates may be used during periods of low water levels. Addition of the water conditioning agent Quest (R) (0.25% v/v) to glyphosate spray mixtures diminished the influence of simulated rain events following glyphosate application. Twelve other adjuvants did not influence the effect of simulated rain events.
Resumo:
Hygrophila ( Hygrophila polysperma (Roxb.) T. Anderson) is a plants which forms serious aquatic weed problems. Both submerged and emergent growth forms occur. Nutritional studies with a controlled release fertilizer and sediments collected from hygrophila-infested areas were conducted with the emergent growth habit to provide insights into growth of this introduced plant. Plant dry weights for experimental 16- week culture periods with low average temperatures were associated with low amounts of hygrophila biomass as compared to culture periods with high average temperatures. Hygrophila cultured in sand rooting media with the controlled release fertilizer produced as much as 20 times more dry weight than plants cultured in sediments only. First-degree linear regression statistics showed hygrophila dry weights were highly related to ammonia nitrogen, magnesium, sodium, and pH values in the sediments. These findings show the close relationship of the emergent growth habit of hygrophila to sediment nutrients. Analyses for certain sediment characteristics may provide an indication of the potential growth that may be expected for weed infestations of this plant. Hygrophila grows year round in south Florida; however, visual observations of canals and other bodies of water indicate that lower amounts of hygrophila plants occur during the cooler months of year than during the summer season. These findings show the seasonal growth of emergent hygrophila occurs with biomass dependent on both sediment nutrients and temperature.
Resumo:
Studies were conducted to evaluate whether the herbicide imazapyr or a combination of imazapyr and fluridone could be used effectively to control torpedograss ( Panicum repens L.), an exotic perennial plant that has replaced more than 6,000 ha of native vegetation and degraded quality wildlife habitat in Lake Okeechobee, Florida. Torpedograss was controlled for more than one year in some areas following a single aerial treatment using 0.56, 0.84, or 1.12 kg acid equivalents (ae) imazapyr/ha. Combining imazapyr and fluridone did not increase the level of torpedograss control. In areas where plant biomass was reduced by fire prior to being treated with 0.84 or 1.12 kg ae imazapyr/ha, torpedograss was controlled for more than two years and native plant species, including duck potato ( Sagittaria lancifolia L.) and pickerelweed ( Pontederia cordata L.) became the dominant vegetation in less than one year. Although torpedograss was controlled in some areas, little or no long-term control was observed at 16 of the 26 treatment locations. To reduce the uncertainty associated with predicting long-term treatment affects, additional studies are needed to determine whether environmental factors such as periphyton mats, plant thatch, hydroperiod and water depth affect treatment efficacy. , he
Resumo:
Florida’s large number of shallow lakes, warm climate and long growing season have contributed to the development of excessive growths of aquatic macrophytes that have seriously interfered with many water use activities. The introduction of exotic aquatic macrophyte species such as hydrilla ( Hydrilla verticillata ) have added significantly to aquatic plant problems in Florida lakes. The use of grass carp ( Ctenopharyngodon idella ) can be an effective and economical control for aquatic vegetation such as hydrilla. Early stocking rates (24 to 74 grass carp per hectare of lake area) resulted in grass carp consumption rates that vastly exceeded the growth rates of the aquatic plants and often resulted in the total loss of all submersed vegetation. This study looked at 38 Florida lakes that had been stocked with grass carp for 3 to 10 years with stocking rates ranging from < 1 to 59 grass carp per hectare of lake and 1 to 207 grass carp per hectare of vegetation to determine the long term effects of grass carp on aquatic macrophyte communities. The median PAC (percent area coverage) value of aquatic macrophytes for the study lakes after they were stocked with grass carp was 14% and the median PVI (percent volume infested) value of aquatic macrophytes was 2%. Only lakes stocked with less than 25 to 30 fish per hectare of vegetation tended to have higher than median PAC and PVI values. When grass carp are stocked at levels of > 25 to 30 fish per hectare of vegetation the complete control of aquatic vegetation can be achieved, with the exception of a few species of plants that grass carp have extreme difficulty consuming. If the management goal for a lake is to control some of the problem aquatic plants while maintaining a small population of predominately unpalatable aquatic plants, grass carp can be stocked at approximately 25 to 30 fish per hectare of vegetation.
Resumo:
Executive Summary: Observations show that warming of the climate is unequivocal. The global warming observed over the past 50 years is due primarily to human-induced emissions of heat-trapping gases. These emissions come mainly from the burning of fossil fuels (coal, oil, and gas), with important contributions from the clearing of forests, agricultural practices, and other activities. Warming over this century is projected to be considerably greater than over the last century. The global average temperature since 1900 has risen by about 1.5ºF. By 2100, it is projected to rise another 2 to 11.5ºF. The U.S. average temperature has risen by a comparable amount and is very likely to rise more than the global average over this century, with some variation from place to place. Several factors will determine future temperature increases. Increases at the lower end of this range are more likely if global heat-trapping gas emissions are cut substantially. If emissions continue to rise at or near current rates, temperature increases are more likely to be near the upper end of the range. Volcanic eruptions or other natural variations could temporarily counteract some of the human-induced warming, slowing the rise in global temperature, but these effects would only last a few years. Reducing emissions of carbon dioxide would lessen warming over this century and beyond. Sizable early cuts in emissions would significantly reduce the pace and the overall amount of climate change. Earlier cuts in emissions would have a greater effect in reducing climate change than comparable reductions made later. In addition, reducing emissions of some shorter-lived heat-trapping gases, such as methane, and some types of particles, such as soot, would begin to reduce warming within weeks to decades. Climate-related changes have already been observed globally and in the United States. These include increases in air and water temperatures, reduced frost days, increased frequency and intensity of heavy downpours, a rise in sea level, and reduced snow cover, glaciers, permafrost, and sea ice. A longer ice-free period on lakes and rivers, lengthening of the growing season, and increased water vapor in the atmosphere have also been observed. Over the past 30 years, temperatures have risen faster in winter than in any other season, with average winter temperatures in the Midwest and northern Great Plains increasing more than 7ºF. Some of the changes have been faster than previous assessments had suggested. These climate-related changes are expected to continue while new ones develop. Likely future changes for the United States and surrounding coastal waters include more intense hurricanes with related increases in wind, rain, and storm surges (but not necessarily an increase in the number of these storms that make landfall), as well as drier conditions in the Southwest and Caribbean. These changes will affect human health, water supply, agriculture, coastal areas, and many other aspects of society and the natural environment. This report synthesizes information from a wide variety of scientific assessments (see page 7) and recently published research to summarize what is known about the observed and projected consequences of climate change on the United States. It combines analysis of impacts on various sectors such as energy, water, and transportation at the national level with an assessment of key impacts on specific regions of the United States. For example, sea-level rise will increase risks of erosion, storm surge damage, and flooding for coastal communities, especially in the Southeast and parts of Alaska. Reduced snowpack and earlier snow melt will alter the timing and amount of water supplies, posing significant challenges for water resource management in the West. (PDF contains 196 pages)
Resumo:
Ambystoma mabeei, a small relatively uncommon salamander of the sub-genus Linguaelapsus, is limited in distribution to the coastal plain of North and South Carolina. First described in 1928, few specimens have been collected and details of its biology have remained essentially unknown. (PDF contains 3 pages)
Resumo:
In the past few years, large-scale, high-seas driftnet fishing has sparked intense debate and political conflict in many oceanic regions. In the Pacific Ocean the driftnet controversy first emerged in the North Pacific transition zone and subarctic frontal zone, where driftnet vessels from Japan, the Republic of Korea, and Taiwan pursue their target species of neon flying squid. Other North Pacific driftnet fleets from Japan and Taiwan target stocks of tunas and billfishes. Both types of driftnet fishing incidentally kill valued non-target species of marine life, including fish, mammals, birds, and turtles. In response to public concerns about driftnet fishing, government scientists began early on to assemble available information and consider what new data were required to assess impacts on North Pacific marine resources and the broader pelagic ecosystem. Accordingly, a workshop was convened at the NMFS Honolulu Laboratory in May 1988 to review current information on the biology, oceanography, and fisheries of the North Pacific transition zone and subarctic frontal zone. The workshop participants, from the United States and Canada, also developed a strategic plan to guide NMFS in developing a program of driftnet fishery research and impact assessment. This volume contains a selection of scientific review papers presented at the 1988 Honolulu workshop. The papers represent part of the small kernel of information available then, prior to the expansion of cooperative international scientific programs. Subsequent driftnet fishery monitoring and research by the United States, Canada, Japan, Korea, and Taiwan have added much new data. Nevertheless, this collection of papers provides a historical perspective and contains useful information not readily available elsewhere. (PDF file contains 118 pages.)
Resumo:
Sea level rise and inundation were stated to be the highest priorities in the community-developed Ocean Research Priorities Plan and Implementation Strategy in 2005. Although they remain stated priorities, very few resources have been allocated towards this challenge. Inundation poses a substantial risk to many coastal communities, and the risk is projected to increase because of continued development, changes in the frequency and intensity of inundation events, and acceleration in the rate of sea-level rise along our vulnerable shorelines. (PDF contains 4 pages) There is an increasing urgency for federal and state governments to focus on the local and regional levels and consistently provide the information, tools, and methods necessary for adaptation. Calls for action at all levels acknowledge that a viable response must engage federal, state and local expertise, perspectives, and resources in a coordinated and collaborative effort. A workshop held in December 2000 on coastal inundation and sea level rise proposes a shared framework that can help guide where investments should be made to enable states and local governments to assess impacts and initiate adaptation strategies over the next decade.
Resumo:
The electron diffraction investigation of the following compounds has been carried out: sulfur, sulfur nitride, realgar, arsenic trisulfide, spiropentane, dimethyltrisulfide, cis and trans lewisite, methylal, and ethylene glycol.
The crystal structures of the following salts have been determined by x-ray diffraction: silver molybdateand hydrazinium dichloride.
Suggested revisions of the covalent radii for B, Si, P, Ge, As, Sn, Sb, and Pb have been made, and values for the covalent radii of Al, Ga, In, Ti, and Bi have been proposed.
The Schomaker-Stevenson revision of the additivity rule for single covalent bond distances has been used in conjunction with the revised radii. Agreement with experiment is in general better with the revised radii than with the former radii and additivity.
The principle of ionic bond character in addition to that present in a normal covalent bond has been applied to the observed structures of numerous molecules. It leads to a method of interpretation which is at least as consistent as the theory of multiple bond formation.
The revision of the additivity rule has been extended to double bonds. An encouraging beginning along these lines has been made, but additional experimental data are needed for clarification.
Resumo:
A series of binary borosilicate glasses prepared by the sol-gel method are shown to be bioactive. Tetraethyl orthosilicate (TEOS) and trimethylborate (TMB) in acidic medium are used to prepare xB(2)O(3)center dot(1-x)SiO2 glass systems for x = 0.045-0.167. The formation of a layer of apatite-like mineral on the glass surface becomes apparent after soaking in simulated body fluid for 48 h. We have measured the B-11-B-11 homonuclear second moments of the borosilicate glasses and inferred that no macroscopic phase separation occurred in our glasses. The B-11 chemical shift data also show that the formation of clustered boroxol rings is negligible in our glass system. Although the bioactivity of our borosilicate glasses is less than that of CaO-SiO2 sol-gel glasses, these simple binary systems could be taken as reference glass systems for the search of new bioactive borosilicate glasses. (C) 2008 Elsevier Ltd. All rights reserved.