899 resultados para HYPOTHALAMUS-PITUITARY-TESTICULAR AXIS
Resumo:
PURPOSE: Two groups of girls with premature breast development were studied retrospectively. We tried to identify clinical, radiological, and hormonal parameters that could distinguish between a benign, nonprogressive premature thelarche and a true precocious puberty. METHODS: The clinical outcome of 88 girls with breast enlargement before 6.1 years of age was analyzed. Taking into account the progression of their sexual maturation, we allocated the children into 2 groups: "Isolated Premature Thelarche" (n = 63) and "Precocious Puberty" (n = 25) groups. Chronological and bone ages, height and growth velocity centiles, computerized tomography of hypothalamus-pituitary area, pelvic ultrasonography, gonadotropin response to luteinizing hormone-releasing hormone stimulation as well as basal levels of luteinizing hormone, follicle-stimulating hormone, estradiol, and prolactin were studied in both groups. Statistical analysis were performed using the Student t test to compare the sample means. Fisher's exact test and chi² test were used to analyze the nonparametric variables. RESULTS: Isolated premature thelarche most frequently affected girls younger than 2 years who presented exaggerated follicle-stimulating hormone response to luteinizing hormone-releasing hormone stimulation test. The precocious puberty group had higher initial stature, accelerated growth rate and bone age, increased uterine and ovarian volumes, high spontaneous luteinizing hormone levels by immunofluorimetric assay, as well as a high luteinizing hormone response and peak luteinizing hormone/follicle-stimulating hormone ratio after luteinizing hormone-releasing hormone stimulation. CONCLUSION: At initial presentation, girls who undergo true precocious puberty present advanced bone age, increased uterine and ovarian volumes in addition to breast enlargement, as well as an luteinizing hormone-predominant response after a luteinizing hormone-releasing hormone stimulation test.
Resumo:
Exposure to chronic stress can have broad effects on health ranging from increased predisposition for neuropsychiatric disorders to deregulation of immune responses. The chronic unpredictable stress (CUS) protocol has been widely used to study the impact of stress exposure in several animal models and consists in the random, intermittent, and unpredictable exposure to a variety of stressors during several weeks. CUS has consistently been shown to induce behavioral and immunological alterations typical of the chronic stress-response. Unfortunately C57BL/6 mice, one of the most widely used mouse strains, due to the great variety of genetically modified lines, seem to be resistant to the commonly used 4-week-long CUS protocol. The definition of an alternative CUS protocol allowing the use of C57BL/6 mice in chronic stress experiments is a need. Here, we show that by extending the CUS protocol to 8?weeks is possible to induce a chronic stress-response in C57BL/6 mice, as revealed by abrogated body weight gain, increased adrenals weight, and an overactive hypothalamic-pituitary-adrenal axis with increased levels of serum corticosterone. Moreover, we also observed stress-associated behavioral alterations, including the potentiation of anxious-like and depressive-like behaviors and a reduction of exploratory behavior, as well as subtle stress-related changes in the cell population of the thymus and of the spleen. The present protocol for C57BL/6 mice consistently triggers the spectrum of CUS-induced changes observed in rats and, thus, will be highly useful to researchers that need to use this particular mouse strain as an animal model of neuropsychiatric disorders and/or immune deregulation related to CUS.
Resumo:
Exogenous administration of glucocorticoids is a widely used and efficient tool to investigate the effects of elevated concentrations of these hormones in field studies. Because the effects of corticosterone are dose and duration-dependent, the exact course of plasma corticosterone levels after exogenous administration needs to be known. We tested the performance of self-degradable corticosterone pellets (implanted under the skin) in elevating plasma corticosterone levels. We monitored baseline (sampled within 3min after capture) total corticosterone levels and investigated potential interactions with corticosteroid-binding-globulin (CBG) capacity and the endogenous corticosterone response to handling in Eurasian kestrel Falco tinnunculus and barn owl Tyto alba nestlings. Corticosterone pellets designed for a 7-day-release in rodents elevated circulating baseline total corticosterone during only 2-3 days compared to placebo-nestlings. Highest levels occurred 1-2days after implantation and levels decreased strongly thereafter. CBG capacity was also increased, resulting in a smaller, but still significant, increase in baseline free corticosterone levels. The release of endogenous corticosterone as a response to handling was strong in placebo-nestlings, but absent 2 and 8 days after corticosterone pellet implantation. This indicates a potential shut-down of the hypothalamo-pituitary-adrenal axis after the 2-3 days of elevated baseline corticosterone levels. 20 days after pellet implantation, the endogenous corticosterone response to handling of nestlings implanted with corticosterone pellets attained similar levels as in placebo-nestlings. Self-degradable pellets proved to be an efficient tool to artificially elevate circulating baseline corticosterone especially in field studies, requiring only one intervention. The resulting peak-like elevation of circulating corticosterone, the concomitant elevation of CBG capacity, and the absence of an endogenous corticosterone response to an acute stressor have to be taken into account.
Resumo:
Chronic stress in Western society can activate the autonomus, neuroendocrine and inflammatory/immunlogic systems. Chronic exposure to stressors can indeed stimulate the hypothalamic-pituitary-adrenal axis and induce a disbalance between anabolic and catabolic hormones, responsible of an increased in visceral fat and of insulin resistance. These metabolic consequences can lead to pre-diabetes. Exposure to chronic stress results in allostatic load and its pathophysiologic consequences. The knowledge of this mecanisms and the cardiovascular and metabolic risk related, should influence our way of thinking about patient care. To decrease allostatic load, practitioners can rely on therapeutic relation. Therapeutic education is one of the skill that can be use to create therapeutic relation.
Resumo:
Administration of ghrelin, a key peptide in the regulation of energy homeostasis, has been shown to decrease LH pulse frequency while concomitantly elevating cortisol levels. Because increased endogenous CRH release in stress is associated with an inhibition of reproductive function, we have tested here whether the pulsatile LH decrease after ghrelin may reflect an activated hypothalamic-pituitary-adrenal axis and be prevented by a CRH antagonist. After a 3-h baseline LH pulse frequency monitoring, five adult ovariectomized rhesus monkeys received a 5-h saline (protocol 1) or ghrelin (100-microg bolus followed by 100 microg/h, protocol 2) infusion. In protocols 3 and 4, animals were given astressin B, a nonspecific CRH receptor antagonist (0.45 mg/kg im) 90 min before ghrelin or saline infusion. Blood samples were taken every 15 min for LH measurements, whereas cortisol and GH were measured every 45 min. Mean LH pulse frequency during the 5-h ghrelin infusion was significantly lower than in all other treatments (P < 0.05) and when compared with the baseline period (P < 0.05). Pretreatment with astressin B prevented the decrease. Ghrelin stimulated cortisol and GH secretion, whereas astressin B pretreatment prevented the cortisol, but not the GH, release. Our data indicate that CRH release mediates the inhibitory effect of ghrelin on LH pulse frequency and suggest that the inhibitory impact of an insufficient energy balance on reproductive function may in part be mediated by the hypothalamic-pituitary-adrenal axis.
Resumo:
Salivary cortisol is a steroid hormone that is produced in the hypothalamic-pituitary-adrenal axis and secreted into saliva when persons are under stress. High levels of cortisol in saliva can be produced by many different factors, including obesity and certain psychological disorders. The articles selected for inclusion in this review were identified using Google Scholar and Medline, and this search obtained a total of 57 items. The validity of these studies was established according to the degree of evidence presented, by citations and by their applicability to the healthcare context in Spain. Specifically, this review takes into consideration studies of salivary cortisol and stress in children and adults, and those examining the relation between high levels of salivary cortisol and other disorders such as anxiety, attention-deficit/hyperactivity disorder, social phobia or emotional deprivation. These studies show that salivary cortisol is a clear indicator of stress in both children and adults. High levels of this hormone in saliva are associated with the following main consequences: reduced immune function, affecting healing and thus prolonging recovery time; delayed growth in children; increased blood pressure and heart rate in both children and adults.
Resumo:
Idiopathic hypogonadotropic hypogonadism (IHH) is an important human disease model. Investigations of the genetics of IHH have facilitated insights into critical pathways regulating sexual maturation and fertility. IHH has been traditionally considered a monogenic disorder. This model holds that a single gene defect is responsible for the disease in each patient. In the case of IHH, 30% of cases are explained by mutations in one of eleven genes. In recent years, several lines of evidence have challenged the monogenic paradigm in IHH. First, disease-associated mutations display striking incomplete penetrance and variable expressivity within and across IHH families. Second, each locus is responsible for only a small percentage of cases. Third, more than one disease-associated mutation seems to be segregating in some families with IHH, and their combined or separate presence in individuals accounts for the variability in disease severity. Finally, IHH is not strictly a congenital and life-long disorder; occasionally it manifests itself during adulthood (adult-onset IHH); in other cases, the disease is not permanent, as evidenced by normal activity of the hypothalamic-pituitary-gonadal axis after discontinuation of treatment in adulthood (IHH reversal). Together, these observations suggest that IHH is not strictly a monogenic mendelian disease, as previously thought. Rather, it is emerging as a digenic, and potentially oligogenic disease, in which hormonal and/or environmental factors may critically influence genetic predisposition and clinical course. Future investigations of IHH should characterize the extent of the involvement of multiple genes in disease pathogenesis, and elucidate the contributions of epigenetic factors.
Resumo:
OBJECTIVES: We compared androgen and gonadotropin values in HIV-infected men who did and did not develop lipoatrophy on combination antiretroviral therapy (cART). METHODS: From a population of 136 treatment-naïve male Caucasians under successful zidovudine/lamivudine-based cART, the 10 patients developing lipoatrophy (cases) were compared with 87 randomly chosen controls. Plasma levels of free testosterone (fT), dehydroepiandrosterone (DHEA), follicle-stimulating hormone and luteinizing hormone (LH) were measured at baseline and after 2 years of cART. RESULTS: At baseline, 60% of the cases and 71% of the controls showed abnormally low fT values. LH levels were normal or low in 67 and 94% of the patients, respectively, indicating a disturbance of the hypothalamic-pituitary-gonadal axis. fT levels did not significantly change after 2 years of cART. Cases showed a significant increase in LH levels, while controls showed a significant increase in DHEA levels. In a multivariate logistic regression model, lipoatrophy was associated with higher baseline DHEA levels (P=0.04), an increase in LH levels during cART (P=0.001), a lower body mass index and greater age. CONCLUSIONS: Hypogonadism is present in the majority of HIV-infected patients. The development of cART-related lipoatrophy is associated with an increase in LH and a lack of increase in DHEA levels.
Resumo:
The systemic response to injury or infection is often accompanied by significant alterations in host metabolism and glucose homeostasis. Within the liver, these changes include a decrease in glycogenesis and an increase in gluconeogenesis, and in peripheral tissues, the development of insulin resistance and the increased utilization of glucose by non-insulin-dependent pathways. Depending on the severity and the duration of the response, both hyper- and hypoglycemia can ensue and each can become a clinically important manifestation of the systemic inflammatory response. The protein known as macrophage migration inhibitory factor (MIF) has been identified recently to play a central role in host immunity and to regulate glucocorticoid effects on the immune and inflammatory systems. MIF is released in vivo from activated immune cells as well as by the anterior pituitary gland upon stimulation of the hypothalamic-pituitary-adrenal axis. MIF also has been found to be secreted together with insulin from the pancreatic beta-cells and to act as an autocrine factor to stimulate insulin release. Since circulating MIF levels are elevated during stress or systemic inflammatory processes, this protein may play a central role in the control of insulin secretion during various disease states.
Resumo:
Being repeatedly confronted to very difficult situations since childhood influences the way indivuals will later respond to even mildly stressful events. The hypothalamic-pituitary-adrenal axis (HPA) is a complex system implicated in regulating neuroendocrine responses to stress. Its activation produces among others the <stress hormonea, cortisol. However, the regulation of the physiological response to stress depends on psychological factors linked with the representations that individuals develop regarding their close relationships i.e. attachment. Furthermore, attachment representations seem to be associated with oxytocin, a hormone involved both in cortisol reduction and in positive social behaviours.
Resumo:
Epidemiological studies indicate that children born small for gestational age (SGA) have an increased risk of metabolic and cardiovascular disorders as adults. This suggests that foetal undernutrition leads to permanent metabolic alterations, which predispose to metabolic abnormalities upon exposure to environmental factors such as low physical activity and/or high-energy intake in later life (thrifty phenotype hypothesis). However, this relationship is not restricted to foetal undernutrition or intrauterine growth retardation, but is also found for children born premature, or for high birth weight children. Furthermore, early post-natal nutrition, and more specifically catch-up growth, appear to modulate cardiovascular risk as well. Intrauterine growth retardation can be induced in animal models by energy/protein restriction, or ligation of uterine arteries. In such models, altered glucose homeostasis, including low beta-cell mass, low insulin secretion and insulin resistance is observed after a few weeks of age. In humans, several studies have confirmed that children born SGA have insulin resistance as adolescents and young adults. Alterations of glucose homeostasis and increased lipid oxidation can indeed be observed already in non-diabetic children born SGA at early pubertal stages. These children also have alterations of stature and changes in body composition (increased fat mass), which may contribute to the pathogenesis of insulin resistance. Permanent metabolic changes induced by foetal/early neonatal nutrition (metabolic inprinting) may involve modulation of gene expression through DNA methylation, or alterations of organ structure. It is also possible that events occurring during foetal/neonatal development lead to long-lasting alterations of the hypothalamo-pituitary-adrenal axis or the hypothalamo-pituitary-insulin-like growth factor-1 axis.
Resumo:
Clinical risk factors have a low predictive value on suicide. This may explain the increasing interest in potential neurobiological correlates and specific heritable markers of suicide vulnerability. This review aims to present the current neurobiological findings that have been shown to be implicated in suicide completers and to discuss how postmortem studies may be useful in characterizing these individuals. Data on the role of the main neurobiological systems in suicidality, such as the neurotransmitter families, hypothalamic-pituitary-adrenal axis, neurotrophic factors, and polyamines, are exposed at the different biochemical, genetic, and epigenetic levels. Some neuroanatomic and neuropathological aspects as well as their in vivo morphological and functional neuroimaging correlates are also described. Except for the serotoninergic system, particularly with respect to the polymorphism of the gene coding for the serotonin transporter (5-HTTLPR) and brain-derived neurotrophic factor, data did not converge to produce a univocal consensus. The possible limitations of currently published studies are discussed, as well as the scope for long-term prospective studies.
Resumo:
Different interactions have been described between glucocorticoids and the product of the ob gene leptin. Leptin can inhibit the activation of the hypothalamo-pituitary-adrenal axis by stressful stimuli, whereas adrenal glucocorticoids stimulate leptin production by the adipocyte. The present study was designed to investigate the potential direct effects of leptin to modulate glucocorticoid production by the adrenal. Human adrenal glands from kidney transplant donors were dissociated, and isolated primary cells were studied in vitro. These cells were preincubated with recombinant leptin (10(-10)-10(-7) M) for 6 or 24 h, and basal or ACTH-stimulated cortisol secretion was subsequently measured. Basal cortisol secretion was unaffected by leptin, but a significant and dose-dependent inhibition of ACTH-stimulated cortisol secretion was observed [down by 29 +/- 0.1% of controls with the highest leptin dose, P < 0.01 vs. CT (unrelated positive control)]. This effect of leptin was also observed in rat primary adrenocortical cells, where leptin inhibited stimulated corticosterone secretion in a dose-dependent manner (down by 46 +/- 0.1% of controls with the highest leptin dose, P < 0.001 vs. CT). These effects of leptin in adrenal cells are likely mediated by the long isoform of the leptin receptor (OB-R), because its transcript was found to be expressed in the adrenal tissue and leptin had no inhibitory effect in adrenal glands obtained from db/db mice. Therefore, leptin inhibits directly stimulated cortisol secretion from human and rat adrenal glands, and this may represent an important mechanism to modulate glucocorticoid levels in various metabolic states.
Resumo:
The present study was designed to explore the thermogenic effect of thyroid hormone administration and the resulting changes in nitrogen homeostasis. Normal male volunteers (n = 7) received thyroxin during 6 weeks. The first 3-week period served to suppress endogenous thyroid secretion (180 micrograms T4/day). This dose was doubled for the next 3 weeks. Sleeping energy expenditure (respiratory chamber) and BMR (hood) were measured by indirect calorimetry, under standardized conditions. Sleeping heart rate was continuously recorded and urine was collected during this 12-hour period to assess nitrogen excretion. The changes in energy expenditure, heart rate and nitrogen balance were then related to the excess thyroxin administered. After 3 weeks of treatment, serum TSH level fell to 0.15 mU/L, indicating an almost complete inhibition of the pituitary-thyroid axis. During this phase of treatment there was an increase in sleeping EE and sleeping heart rate, which increased further by doubling the T4 dose (delta EE: +8.5 +/- 2.3%, delta heart rate +16.1 +/- 2.2%). The T4 dose, which is currently used as a substitutive dose, lead to a borderline hyperthyroid state, with an increase in EE and heart rate. Exogenous T4 administration provoked a significant increase in urinary nitrogen excretion averaging 40%. It is concluded that T4 provokes an important stimulation of EE, which is mostly mediated by an excess protein oxidation.
Resumo:
β-blockers and β-agonists are primarily used to treat cardiovascular diseases. Inter-individual variability in response to both drug classes is well recognized, yet the identity and relative contribution of the genetic players involved are poorly understood. This work is the first genome-wide association study (GWAS) addressing the values and susceptibility of cardiovascular-related traits to a selective β(1)-blocker, Atenolol (ate), and a β-agonist, Isoproterenol (iso). The phenotypic dataset consisted of 27 highly heritable traits, each measured across 22 inbred mouse strains and four pharmacological conditions. The genotypic panel comprised 79922 informative SNPs of the mouse HapMap resource. Associations were mapped by Efficient Mixed Model Association (EMMA), a method that corrects for the population structure and genetic relatedness of the various strains. A total of 205 separate genome-wide scans were analyzed. The most significant hits include three candidate loci related to cardiac and body weight, three loci for electrocardiographic (ECG) values, two loci for the susceptibility of atrial weight index to iso, four loci for the susceptibility of systolic blood pressure (SBP) to perturbations of the β-adrenergic system, and one locus for the responsiveness of QTc (p<10(-8)). An additional 60 loci were suggestive for one or the other of the 27 traits, while 46 others were suggestive for one or the other drug effects (p<10(-6)). Most hits tagged unexpected regions, yet at least two loci for the susceptibility of SBP to β-adrenergic drugs pointed at members of the hypothalamic-pituitary-thyroid axis. Loci for cardiac-related traits were preferentially enriched in genes expressed in the heart, while 23% of the testable loci were replicated with datasets of the Mouse Phenome Database (MPD). Altogether these data and validation tests indicate that the mapped loci are relevant to the traits and responses studied.