996 resultados para HUMAN-MELANOMA
Resumo:
Thirty-five HLA-A2(+) patients with completely resected stage I-III melanoma were vaccinated multiple times over 6 months with a modified melanoma peptide, gp100(209-2M), emulsified in Montanide adjuvant. Direct ex vivo gp100(209-2M) tetramer analysis of pre- and postvaccine peripheral blood mononuclear cells (PBMCs) demonstrated significant increases in the frequency of tetramer(+) CD8(+) T cells after immunization for 33 of 35 evaluable patients (median, 0.36%; range, 0.05-8.9%). Ex vivo IFN-gamma cytokine flow cytometry analysis of postvaccine PBMCs after brief gp100(209-2M) in vitro activation showed that for all of the patients studied tetramer(+) CD8(+) T cells produced IFN-gamma; however, some patients had significant numbers of tetramer(+) IFN-gamma(-) CD8(+)T cells suggesting functional anergy. Additionally, 8 day gp100(209-2M) in vitro stimulation (IVS) of pre- and postvaccine PBMCs resulted in significant expansion of tetramer(+) CD8(+) T cells from postvaccine cells for 34 patients, and these IVS tetramer(+) CD8(+) T cells were functionally responsive by IFN-gamma cytokine flow cytometry analysis after restimulation with either native or modified gp100 peptide. However, correlated functional and phenotype analysis of IVS-expanded postvaccine CD8(+) T cells demonstrated the proliferation of functionally anergic gp100(209-2M)- tetramer(+) CD8(+) T cells in several patients and also indicated interpatient variability of gp100(209-2M) stimulated T-cell proliferation. Flow cytometry analysis of cryopreserved postvaccine PBMCs from representative patients showed that the majority of tetramer(+) CD8+ T cells (78.1 +/- 4.2%) had either an "effector" (CD45 RA(+)/CCR7(-)) or an "effector-memory" phenotype (CD45RA(-)/CCR7(-)). Notably, analysis of PBMCs collected 12-24 months after vaccine therapy demonstrated the durable presence of gp100(209-2M)-specific memory CD8(+) T cells with high proliferation potential. Overall, this report demonstrates that after vaccination with a MHC class I-restricted melanoma peptide, resected nonmetastatic melanoma patients can mount a significant antigen-specific CD8(+) T-cell immune response with a functionally intact memory component. The data further support the combined use of tetramer binding and functional assays in correlated ex vivo and IVS settings as a standard for immunomonitoring of cancer vaccine patients.
Resumo:
The reactivity spectrum of three monoclonal antibodies (Mabs) to human malignant glioma, five Mabs to melanomas and one Mab anti-HLA-DR was investigated by an indirect antibody binding radioimmunoassay on a panel of cells derived from 60 glioma lines, including 47 malignant astrocytomas, 11 low-grade astrocytomas and two malignant ependymomas as well on cells from 12 melanoma, three neuroblastoma, three medulloblastoma, two schwannoma, two retinoblastoma, two choroïd plexus papilloma, ten meningioma and 12 unrelated tumor lines. The anti-glioma Mabs BF7 and GE2 reacted preferentially with gliomas, while the anti-glioma Mab CG12 reacted with gliomas, melanomas, neuroblastomas and medulloblastomas. The five anti-melanoma Mabs reacted with gliomas, neuroblastomas and medulloblastomas. The anti-HLA-DR Mab D1-12 reacted with gliomas, melanomas and some meningiomas. On the basis of the data presented, we describe three different antigenic systems; the first one is glioma-associated, the second one is related to differentiation antigens expressed on cells derived from the neuroectoderm and the third is represented by HLA-DR antigens which are expressed not only on B-lymphoblastoid cells but also on melanomas and gliomas.
Resumo:
The cornerstone of the concept of immunosurveillance in cancer should be the experimental demonstration of immune responses able to alter the course of in vivo spontaneous tumor progression. Elegant genetic manipulation of the mouse immune system has proved this tenet. In parallel, progress in understanding human T cell mediated immunity has allowed to document the existence in cancer patients of naturally acquired T cell responses to molecularly defined tumor antigens. Various attributes of cutaneous melanoma tumors, notably their adaptability to in vitro tissue culture conditions, have contributed to convert this tumor in the prototype for studies of human antitumor immune responses. As a consequence, the first human cytolytic T lymphocyte (CTL)-defined tumor antigen and numerous others have been identified using lymphocyte material from patients bearing this tumor, detailed analyses of specific T cell responses have been reported and a relatively large number of clinical trials of vaccination have been performed in the last 15 years. Thus, the "melanoma model" continues to provide valuable insights to guide the development of clinically effective cancer therapies based on the recruitment of the immune system. This chapter reviews recent knowledge on human CD8 and CD4 T cell responses to melanoma antigens.
Resumo:
Summary The mechanisms regulating the protective immune T-cell responses generated against the persistent Epstein-Barr virus (EBV) and Cytomegaloviru_s (CNIV) remain poorly understood. We analyzed the dynamics of cellular differentiation and T-cell receptor (TCR) clonotype selection of EBV- and CMV-specific T-cells in healthy adults and melanoma patients. While these responses could be subdivided into four T lymphocyte populations, théir proportions varied between EBV and CMV specific responses. Phenotypic and TCR clonotypic analyses supported a linear model of differentiation from the early-differentiated (EM/CD28pos) subset to the late-differentiatdc (EMRA/CD28neg) subset. In-depth clonal composition analyses revealed TCR repertoires, which were highly restricted for CMV- and relatively diverse for EBV-specific cells. Virtually all virus-specific clonotypes identified in the EMRA/CD28neg subset were also found within the pool of less differentiated "memory" cells. However, striking differences in the patterns of dominance were observed among these subsets, as some clonotypes were selected with differentiation, while others were not. Latedifferentiated CMV-specific clonotypes were mostly characterized by TCRs with lower dependency on CD8 co-receptor interaction. Yet all clonotypes displayed similar functional avidities, suggesting a compensatory role of CD8 in the clonotypes of lower TCR avidity. Importantly, clonotype selection and composition of each virus-specific subset upon differentiation was highly preserved over time, with the presence of the same dominant clonotypes at specific differentiation stages within a period of four years. This work was extended to the study of EBV-specific CD8 T-cell responses in melanoma patients undergoing transient lymphodepletion, followed by adoptive cell transfer (ACT) and immune reconstitution for thè treatment of their tumors. Following treatment regimen, we first observed an increase in the proportion of virus-specific T-cells in 3 out of 5 patients, accompanied by a more differentiated phenotype (EMRA/CD28neg), compared to specific cells of healthy individuals. Yet, similarly to healthy donors, clonotype selection and composition of virus-specific T-cells varied along the pathway of cellular differentiation, with some clonotypes being selected with differentiation, while others were not. Intriguingly, no novel clonotypes emerged following transient immuno-suppression and homeostatic proliferation, finding which was subsequently explained by the absence of EBV reactivation. The distribution of each clonotype within early- and late-differentiated T-cell subsets in 4 out 5 patients was highly stable over time, with those clonotypes initially found before the start of treatment that were again present at specific differentiation stages after transient lymphodepletion and ACT. These findings uncover novel features of the highly sophisticated control of steady state protective T-cell immune responses against persistent herpesviruses in healthy adults. Furthermore they reveal the striking stability of these responses in terms of clonotype selection and composition with T-cell differentiation even in situations where the immune system has been. challenged. Résumé : Les mécanismes qui régulent les réponses immunitaires de type protectrices, générées contre les virus chroniquement persistants tels que l'Epstein-Barr (EBV) ou le Cytomegalo (CMV) restent largement inconnus. Nous avons analysé la différenciation des lymphocytes T spécifiques pour ces virus, ainsi que la composition des clonotypes T (par leur récepteur T) chez les donneurs sains. Les réponses immunes peuvent être classifiées en quatre souspopulations majeures de lymphocytes T, cependant, leur proportion varie entre les réponses spécifiques contre EBV ou CMV. Ces analyses soutiennent le modèle linéaire de différenciation, à partir de la population non différenciée (EM/CD28pos) vers la population plus différenciée (ENIIZA/CD28neg). De plus, nos données sur la composition clonale de ces cellules T spécifiques ont révélé des répertoires TCR restreints, pour la réponse anti-CMV, et relativement diversifiés contre EBV. Tous les clonotypes spécifiques de ces virus identifiés dans la sous-population différenciée EMRA/CD28neg, ont également été retrouvés dans la population de cellules "mémoires". Toutefois, de fortes différences ont été observées dans les schémas de domination de ces sous-populations, en effet, certains clonotypes étaient sélectionnés avec la différenciation, alors que d'autres ne l'étaient pas. Nous avons également démontré que ces clonotypes différenciés et spécifiques pour le CMV sont caractérisés par des TCRs à faible dépendance en regard de la coopération du corécepteur CD8. Néanmoins, tous les clonotypes affichent une avidité fonctionnelle similaire, suggérant un rôle compensatoire du CD8, dans le cas des clonotypes avec une faible avidité du TCR En définitive, la composition et la sélection des clonotypes spécifiques pour chaque virus et pour chaque sous-population suit un schéma de différenciation hautement conservé au cours du temps, avec la présence de ces mêmes clonotypes au même stade de différenciation sur une période de quatre ans. Ce travail a été étendu à l'étude des réponses T CD8+ spécifiques pour le virus EBV chez les patients atteints de mélanome et recevant dans le cadre du traitement de leurs tumeurs une lymphodéplétion transitoire, suivie d'un transfert adoptif de cellules et d'une reconstitution immunitaire. Au cours de cette thérapie, nous avons en premier lieu observé pour 3 des 5 patients une augmentation de la proportion de cellules T spécifiques pour le virus, accompagné d'un phénotype plus différencié (EMRA/CD28neg), et ceci comparativement à des cellules spécifiques d'individus sains. Pourtant, comme nous l'avons observé chez les donneurs sains, la sélection et la composition des clonotypes T spécifiques varient tout au long de la différenciation cellulaire, avec certains clonotypes sélectionnés et d'autres qui ne le sont pas. Étonnamment, aucun nouveau clonotype n'a émergé après l'immuno-suppression transitoire et la prolifération homéostatique. Cette observation trouve son explication par une absence de réactivation du virus EBV chez ces patients, et ce malgré leur traitement. De plus, la distribution de chaque clonotype parmi ces sous-populations non-différenciées et différenciées reste stable au cours du traitement. Ainsi, les mêmes clonotypes initialement identifiés avant le début du traitement sont présents aux mêmes stades de différenciation après la lymphodéplétion et la prolifération homéostatique. Ces résultats ont permis d'identifier de nouveaux mécanismes impliqués dans la régulation hautement «sophistiquée » des réponses immunitaires T contre les virus persistants EBV et CMV chez les donneurs sains. En particulier, ils révèlent la grande stabilité de ces réponses en termes de sélection et de composition des clonotypes avec la différenciation cellulaire, et ce dans les situations chroniques, ainsi que dans les situations dans lesquelles le système immunitaire a été profondément perturbé.
Resumo:
We conducted a Phase I clinical trial investigating the biologic activity of vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte–macrophage colony-stimulating factor in patients with metastatic melanoma. Immunization sites were intensely infiltrated with T lymphocytes, dendritic cells, macrophages, and eosinophils in all 21 evaluable patients. Although metastatic lesions resected before vaccination were minimally infiltrated with cells of the immune system in all patients, metastatic lesions resected after vaccination were densely infiltrated with T lymphocytes and plasma cells and showed extensive tumor destruction (at least 80%), fibrosis, and edema in 11 of 16 patients examined. Antimelanoma cytotoxic T cell and antibody responses were associated with tumor destruction. These results demonstrate that vaccination with irradiated autologous melanoma cells engineered to secrete granulocyte–macrophage colony-stimulating factor stimulates potent antitumor immunity in humans with metastatic melanoma.
Resumo:
alpha-Melanocyte-stimulating hormone (alpha-MSH) activates the melanocortin-1 receptor (MC1R) on melanocytes to promote a switch from red/yellow pheomelanin synthesis to darker eumelanins via positive coupling to adenylate cyclase. The human MC1R locus is highly polymorphic with the specific variants associated with red hair and fair skin (RHC phenotype) postulated to be loss-of-function receptors. We have examined the ability of MC1R variants to activate the cAMP pathway in stably transfected REK293 cells. The RHC associated variants, Arg151Cys, Arg160Trp and Asp294His, demonstrated agonist-mediated increases in cAMP and phosphorylation of cAMP-responsive element-binding protein (CREB). Whereas the Asp294His variant showed severely impaired functional responses, the Arg151Cys and Arg160Trp variants retained considerable signaling capacity. Melanoma cells homozygous for either the Arg151Cys variant or consensus sequence both elicited CREB phosphorylation in response to alpha-MSH in the presence of IBMX. The common RHC alleles, Arg151Cys, Arg160Trp and Asp294His, are neither complete loss-of-function receptors nor are they functionally equivalent. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Riboflavin (vitamin B2) is a precursor for coenzymes involved in energy production, biosynthesis, detoxification, and electron scavenging. Previously, we demonstrated that irradiated riboflavin (IR) has potential antitumoral effects against human leukemia cells (HL60), human prostate cancer cells (PC3), and mouse melanoma cells (B16F10) through a common mechanism that leads to apoptosis. Hence, we here investigated the effect of IR on 786-O cells, a known model cell line for clear cell renal cell carcinoma (CCRCC), which is characterized by high-risk metastasis and chemotherapy resistance. IR also induced cell death in 786-O cells by apoptosis, which was not prevented by antioxidant agents. IR treatment was characterized by downregulation of Fas ligand (TNF superfamily, member 6)/Fas (TNF receptor superfamily member 6) (FasL/Fas) and tumor necrosis factor receptor superfamily, member 1a (TNFR1)/TNFRSF1A-associated via death domain (TRADD)/TNF receptor-associated factor 2 (TRAF) signaling pathways (the extrinsic apoptosis pathway), while the intrinsic apoptotic pathway was upregulated, as observed by an elevated Bcl-2 associated x protein/B-cell CLL/lymphoma 2 (Bax/Bcl-2) ratio, reduced cellular inhibitor of apoptosis 1 (c-IAP1) expression, and increased expression of apoptosis-inducing factor (AIF). The observed cell death was caspase-dependent as proven by caspase 3 activation and poly(ADP-ribose) polymerase-1 (PARP) cleavage. IR-induced cell death was also associated with downregulation of v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homologue (avian)/protein serine/threonine kinase B/extracellular signal-regulated protein kinase 1/2 (Src/AKT/ERK1/2) pathway and activation of p38 MAP kinase (p38) and Jun-amino-terminal kinase (JNK). Interestingly, IR treatment leads to inhibition of matrix metalloproteinase-2 (MMP-2) activity and reduced expression of renal cancer aggressiveness markers caveolin-1, low molecular weight phosphotyrosine protein phosphatase (LMWPTP), and kinase insert domain receptor (a type III receptor tyrosine kinase) (VEGFR-2). Together, these results show the potential of IR for treating cancer.
Resumo:
Background: Melanoma progression occurs through three major stages: radial growth phase (RGP), confined to the epidermis; vertical growth phase (VGP), when the tumor has invaded into the dermis; and metastasis. In this work, we used suppression subtractive hybridization (SSH) to investigate the molecular signature of melanoma progression, by comparing a group of metastatic cell lines with an RGP-like cell line showing characteristics of early neoplastic lesions including expression of the metastasis suppressor KISS1, lack of alpha v beta 3-integrin and low levels of RHOC. Methods: Two subtracted cDNA collections were obtained, one (RGP library) by subtracting the RGP cell line (WM1552C) cDNA from a cDNA pool from four metastatic cell lines (WM9, WM852, 1205Lu and WM1617), and the other (Met library) by the reverse subtraction. Clones were sequenced and annotated, and expression validation was done by Northern blot and RT-PCR. Gene Ontology annotation and searches in large-scale melanoma expression studies were done for the genes identified. Results: We identified 367 clones from the RGP library and 386 from the Met library, of which 351 and 368, respectively, match human mRNA sequences, representing 288 and 217 annotated genes. We confirmed the differential expression of all genes selected for validation. In the Met library, we found an enrichment of genes in the growth factors/receptor, adhesion and motility categories whereas in the RGP library, enriched categories were nucleotide biosynthesis, DNA packing/repair, and macromolecular/vesicular trafficking. Interestingly, 19% of the genes from the RGP library map to chromosome 1 against 4% of the ones from Met library. Conclusion: This study identifies two populations of genes differentially expressed between melanoma cell lines from two tumor stages and suggests that these sets of genes represent profiles of less aggressive versus metastatic melanomas. A search for expression profiles of melanoma in available expression study databases allowed us to point to a great potential of involvement in tumor progression for several of the genes identified here. A few sequences obtained here may also contribute to extend annotated mRNAs or to the identification of novel transcripts.
Resumo:
Melanoma is a highly aggressive and therapy resistant tumor for which the identification of specific markers and therapeutic targets is highly desirable. We describe here the development and use of a bioinformatic pipeline tool, made publicly available under the name of EST2TSE, for the in silico detection of candidate genes with tissue-specific expression. Using this tool we mined the human EST (Expressed Sequence Tag) database for sequences derived exclusively from melanoma. We found 29 UniGene clusters of multiple ESTs with the potential to predict novel genes with melanoma-specific expression. Using a diverse panel of human tissues and cell lines, we validated the expression of a subset of three previously uncharacterized genes (clusters Hs.295012, Hs.518391, and Hs.559350) to be highly restricted to melanoma/melanocytes and named them RMEL1, 2 and 3, respectively. Expression analysis in nevi, primary melanomas, and metastatic melanomas revealed RMEL1 as a novel melanocytic lineage-specific gene up-regulated during melanoma development. RMEL2 expression was restricted to melanoma tissues and glioblastoma. RMEL3 showed strong up-regulation in nevi and was lost in metastatic tumors. Interestingly, we found correlations of RMEL2 and RMEL3 expression with improved patient outcome, suggesting tumor and/or metastasis suppressor functions for these genes. The three genes are composed of multiple exons and map to 2q12.2, 1q25.3, and 5q11.2, respectively. They are well conserved throughout primates, but not other genomes, and were predicted as having no coding potential, although primate-conserved and human-specific short ORFs could be found. Hairpin RNA secondary structures were also predicted. Concluding, this work offers new melanoma-specific genes for future validation as prognostic markers or as targets for the development of therapeutic strategies to treat melanoma.
Resumo:
Pothomorphe umbellata, a native Brazilian plant, is popularly known to be effective in the treatment of skin lesions. This benefit is attributed to 4-nerolidylcatechol (4-NC) a compound extracted from P. umbellata. Since melanomas show prominent resistance to apoptosis and exhibit extreme chemoresistance to multiple forms of therapy, novel compounds addressing induction of cell death are worth investigating. Here, we evaluated effects on cell cycle progression and possible cytotoxic activity of 4-NC in melanoma cell lines as well as human dermal fibroblasts. Inhibitory effects on cell invasion and MMP activity were also investigated. 4-NC showed cytotoxic activity for all melanoma cell lilies tested (IC(50) = 20-40 mu M, 24 h for tumoral cell lines: IC(50) = 50 mu M for fibroblast cell line) associated with its capacity to induce apoptosis. Furthermore, this is the first time that 4-NC is described as an inhibitor of cell invasiveness, due mainly to a G I cell cycle arrest and inhibition of MMP-2 activity in melanoma cell lines. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Fatty acid synthase (FASN) is the metabolic enzyme responsible for the endogenous synthesis of the saturated long-chain fatty acid palmitate. In contrast to most normal cells, FASN is overexpressed in a variety of human cancers including cutaneous melanoma, in which its levels of expression are associated with a poor prognosis and depth of invasion. Recently, we have demonstrated the mitochondrial involvement in FASN inhibition-induced apoptosis in melanoma cells. Herein we compare, via electrospray ionization mass spectrometry (ESI-MS), free fatty acids (FFA) composition of mitochondria isolated from control (EtOH-treated cells) and Orlistat-treated B16-F10 mouse melanoma cells. Principal component analysis (PCA) was applied to the ESI-MS data and found to separate the two groups of samples. Mitochondria from control cells showed predominance of six ions, that is, those of m/z 157 (Pelargonic, 9:0), 255 (Palmitic, 16:0), 281 (Oleic, 18:1), 311 (Arachidic, 20:0), 327 (Docosahexaenoic, 22:6) and 339 (Behenic, 22:0). In contrast, FASN inhibition with Orlistat changes significantly mitochondrial FFA composition by reducing synthesis of palmitic acid, and its elongation and unsaturation products, such as arachidic and behenic acids, and oleic acid, respectively. ESI-MS of mitochondria isolated from Orlistat-treated cells presented therefore three major ions of m/z 157 (Pelargonic, 9:0), 193 (unknown) and 199 (Lauric, 12:0). These findings demonstrate therefore that FASN inhibition by Orlistat induces significant changes in the FFA composition of mitochondria. Copyright (C) 2011 John Wiley & Sons, Ltd.